1
|
Rauchbach E, Zeigerman H, Abu-Halaka D, Tirosh O. Cholesterol Induces Oxidative Stress, Mitochondrial Damage and Death in Hepatic Stellate Cells to Mitigate Liver Fibrosis in Mice Model of NASH. Antioxidants (Basel) 2022; 11:antiox11030536. [PMID: 35326188 PMCID: PMC8944482 DOI: 10.3390/antiox11030536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Liver fibrosis and its end-stage disease cirrhosis are major world health problems arising from chronic injury of the liver. In recent years, the hypothesis that hepatic stellate cells’ (HSCs’) activation and fibrosis can be mitigated by HSC apoptosis and cell death has become of interest. In the current study, we evaluated the effect of cholesterol and bile acids on HSC apoptosis and liver fibrosis. Male C57BL/6J mice (wild type), aged four to five weeks, were fed an AIN-93G based diet (normal diet, ND), ND diet + 1% (w/w) cholesterol (CHOL group), ND diet + 0.5% (w/w) cholic acid (CA group) or ND diet + 1% (w/w) cholesterol + 0.5% (w/w) cholic acid (CHOL + CA group). Female Mdr2(-/-) mice were also treated with ND with and without 1% cholesterol. The effect of cholesterol on liver fibrosis and HSC clearance was evaluated. In addition, we studied the mechanism of cholesterol-induced apoptosis in HSC-T6 and AML-12 hepatocyte cell lines. In animals treated with cholic acids, increased lipid peroxidation and fibrosis were observed after six weeks of treatment. However, addition of cholesterol to the diet of C57BL/6J mice led to HSC-specific apoptosis and resolution of liver fibrosis, verified by double-staining with active caspase and α smooth muscle actin antibodies. In Mdr2 (-/-) mice, a diet supplemented with cholesterol corrected fibrosis and induced active hepatic stellate cells’ clearance. HSC-T6 were found to be much more sensitive to cholesterol-induced oxidative stress, mitochondrial damage and apoptosis compared to hepatocytes. These results indicate that cholesterol may be a trigger of HSC lipid peroxidation and death in the liver in a model of non-alcoholic steatohepatitis. A high cholesterol-to-bile acid ratio may determine the trajectory of the liver disease toward mitigation of fibrosis.
Collapse
|
2
|
Hu J, Bibli SI, Wittig J, Zukunft S, Lin J, Hammes HP, Popp R, Fleming I. Soluble epoxide hydrolase promotes astrocyte survival in retinopathy of prematurity. J Clin Invest 2020; 129:5204-5218. [PMID: 31479425 DOI: 10.1172/jci123835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Polyunsaturated fatty acids such as docosahexaenoic acid (DHA) positively affect the outcome of retinopathy of prematurity (ROP). Given that DHA metabolism by cytochrome P450 and soluble epoxide hydrolase (sEH) enzymes affects retinal angiogenesis and vascular stability, we investigated the role of sEH in a mouse model of ROP. In WT mice, hyperoxia elicited tyrosine nitration and inhibition of sEH and decreased generation of the DHA-derived diol 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP). Correspondingly, in a murine model of ROP, sEH-/- mice developed a larger central avascular zone and peripheral pathological vascular tuft formation than did their WT littermates. Astrocytes were the cells most affected by sEH deletion, and hyperoxia increased astrocyte apoptosis. In rescue experiments, 19,20-DHDP prevented astrocyte loss by targeting the mitochondrial membrane to prevent the hyperoxia-induced dissociation of presenilin-1 and presenilin-1-associated protein to attenuate poly ADP-ribose polymerase activation and mitochondrial DNA damage. Therapeutic intravitreal administration of 19,20-DHDP not only suppressed astrocyte loss, but also reduced pathological vascular tuft formation in sEH-/- mice. Our data indicate that sEH activity is required for mitochondrial integrity and retinal astrocyte survival in ROP. Moreover, 19,20-DHDP may be more effective than DHA as a nutritional supplement for preventing retinopathy in preterm infants.
Collapse
Affiliation(s)
- Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Jihong Lin
- Fifth Medical Department, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Cappa R, de Campos C, Maxwell AP, McKnight AJ. "Mitochondrial Toolbox" - A Review of Online Resources to Explore Mitochondrial Genomics. Front Genet 2020; 11:439. [PMID: 32457801 PMCID: PMC7225359 DOI: 10.3389/fgene.2020.00439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/09/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondria play a significant role in many biological systems. There is emerging evidence that differences in the mitochondrial genome may contribute to multiple common diseases, leading to an increasing number of studies exploring mitochondrial genomics. There is often a large amount of complex data generated (for example via next generation sequencing), which requires optimised bioinformatics tools to efficiently and effectively generate robust outcomes from these large datasets. Twenty-four online resources dedicated to mitochondrial genomics were reviewed. This 'mitochondrial toolbox' summary resource will enable researchers to rapidly identify the resource(s) most suitable for their needs. These resources fulfil a variety of functions, with some being highly specialised. No single tool will provide all users with the resources they require; therefore, the most suitable tool will vary between users depending on the nature of the work they aim to carry out. Genetics resources are well established for phylogeny and DNA sequence changes, but further epigenetic and gene expression resources need to be developed for mitochondrial genomics.
Collapse
Affiliation(s)
- Ruaidhri Cappa
- Centre for Public Health, Institute of Clinical Sciences B, Queen's University Belfast, Royal Victoria Hospital, Belfast, United Kingdom
| | - Cassio de Campos
- School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, United Kingdom
| | - Alexander P Maxwell
- Centre for Public Health, Institute of Clinical Sciences B, Queen's University Belfast, Royal Victoria Hospital, Belfast, United Kingdom
| | - Amy J McKnight
- Centre for Public Health, Institute of Clinical Sciences B, Queen's University Belfast, Royal Victoria Hospital, Belfast, United Kingdom
| |
Collapse
|
4
|
Panee J, Pomozi V, Franke AA, Le Saux O, Gerschenson M. Chronic marijuana use moderates the correlations of serum cholesterol with systemic mitochondrial function and fluid cognition. Mitochondrion 2020; 52:135-143. [PMID: 32169611 DOI: 10.1016/j.mito.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/17/2020] [Accepted: 03/09/2020] [Indexed: 11/24/2022]
Abstract
Activating type 1 cannabinoid (CB1) receptor decreases the particle size of high-density lipoprotein (HDL) and inhibits reverse cholesterol transport (RCT). This study examined whether marijuana (MJ) use is associated with changes of RCT, and how the latter is associated with mitochondrial function and fluid cognition. We recruited 19 chronic MJ users and 20 nonusers with matched age, BMI, sex, ethnicity, and education. We measured their fluid cognition, mitochondrial function (basal and max respiration, ATP production) in peripheral blood mononuclear cells, cholesterol content in serum lipoprotein fractions, enterolactone/creatinine ratio in urine as a marker for dietary polyphenol intake, and lipase activity in serum. We found that higher percentage of large HDL cholesterol (HDL-C) correlated positively, while that of small HDL-C correlated inversely, with mitochondrial function among MJ users, but correlations of the opposite directions were found among nonusers. The concentrations of large and intermediate HDL-C correlated positively with mitochondrial function and fluid cognition among MJ users, but not among nonusers. Both percentage and concentration of large HDL-C correlated positively, while those of small HDL-C correlated inversely, with amounts of daily and lifetime MJ use. In all participants, higher urinary enterolactone/creatinine ratio and lower serum lipase activity were associated with higher large HDL-C/small HDL-C ratio, implying greater RCT. This study suggests that high MJ use may compromise RCT, which is strongly associated with mitochondrial function and fluid cognition among MJ users.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA.
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA
| | - Adrian A Franke
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA
| |
Collapse
|
5
|
Buechler C, Aslanidis C. Role of lipids in pathophysiology, diagnosis and therapy of hepatocellular carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158658. [PMID: 32058031 DOI: 10.1016/j.bbalip.2020.158658] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and widespread cancer. Patients with liver cirrhosis of different aetiologies are at a risk to develop HCC. It is important to know that in approximately 20% of cases primary liver tumors arise in a non-cirrhotic liver. Lipid metabolism is variable in patients with chronic liver diseases, and lipid metabolites involved therein do play a role in the development of HCC. Of note, lipid composition of carcinogenic tissues differs from non-affected liver tissues. High cholesterol and low ceramide levels in the tumors protect the cells from oxidative stress and apoptosis, and do also promote cell proliferation. So far, detailed characterization of the mechanisms by which lipids enable the development of HCC has received little attention. Evaluation of the complex roles of lipids in HCC is needed to better understand the pathophysiology of HCC, the later being of paramount importance for the development of urgently needed therapeutic interventions. Disturbed hepatic lipid homeostasis has systemic consequences and lipid species may emerge as promising biomarkers for early diagnosis of HCC. The challenge is to distinguish lipids specifically related to HCC from changes simply related to the underlying liver disease. This review article discusses aberrant lipid metabolism in patients with HCC.
Collapse
Affiliation(s)
- Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| | - Charalampos Aslanidis
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
6
|
Oliveira HCF, Vercesi AE. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol Aspects Med 2019; 71:100840. [PMID: 31882067 DOI: 10.1016/j.mam.2019.100840] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
In the first part of this review, we summarize basic mitochondrial bioenergetics concepts showing that mitochondria are critical regulators of cell life and death. Until a few decades ago, mitochondria were considered to play essential roles only in respiration, ATP formation, non-shivering thermogenesis and a variety of metabolic pathways. However, the concept presented by Peter Mitchell regarding coupling between electron flow and ATP synthesis through the intermediary of a H+ electrochemical potential leads to the recognition that the proton-motive force also regulates a series of relevant cell signalling processes, such as superoxide generation, redox balance and Ca2+ handling. Alterations in these processes lead to cell death and disease states. In the second part of this review, we discuss the role of mitochondrial dysfunctions in the specific context of hypercholesterolemia-induced atherosclerosis. We provide a literature analysis that indicates a decisive role of mitochondrial redox dysfunction in the development of atherosclerosis and discuss the underlying molecular mechanisms. Finally, we highlight the potential mitochondrial-targeted therapeutic strategies that are relevant for atherosclerosis.
Collapse
Affiliation(s)
- Helena C F Oliveira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Goossens JF, Bailly C. Ursodeoxycholic acid and cancer: From chemoprevention to chemotherapy. Pharmacol Ther 2019; 203:107396. [DOI: 10.1016/j.pharmthera.2019.107396] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
|
8
|
Rosa-Caldwell ME, Brown JL, Lee DE, Wiggs MP, Perry RA, Haynie WS, Caldwell AR, Washington TA, Lo WJ, Greene NP. Hepatic alterations during the development and progression of cancer cachexia. Appl Physiol Nutr Metab 2019; 45:500-512. [PMID: 31618604 DOI: 10.1139/apnm-2019-0407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer-associated bodyweight loss (cachexia) is a hallmark of many cancers and is associated with decreased quality of life and increased mortality. Hepatic function can dramatically influence whole-body energy expenditure and may therefore significantly influence whole-body health during cancer progression. The purpose of this study was to examine alterations in markers of hepatic metabolism and physiology during cachexia progression. Male C57BL/6J mice were injected with 1 × 106 Lewis Lung Carcinoma cells dissolved in 100 μL PBS and cancer was allowed to develop for 1, 2, 3, or 4 weeks. Control animals were injected with an equal volume of phosphate-buffered saline. Livers were analyzed for measures of metabolism, collagen deposition, protein turnover, and mitochondrial quality. Animals at 4 weeks had ∼30% larger livers compared with all other groups. Cancer progression was associated with altered regulators of fat metabolism. Additionally, longer duration of cancer development was associated with ∼3-fold increased regulators of collagen deposition as well as phenotypic collagen content, suggesting increased liver fibrosis. Mitochondrial quality control regulators appeared to be altered before any phenotypic alterations to collagen deposition. While induction of Akt was noted, downstream markers of protein synthesis were not altered. In conclusions, cancer cachexia progression is associated with hepatic pathologies, specifically liver fibrosis. Alterations to mitochondrial quality control mechanisms appear to precede this fibrotic phenotype, potentially suggesting mitochondrial mechanisms for the development of hepatic pathologies during the development and progression of cancer cachexia. Novelty Cachexia progression results in liver collagen deposition and fibrosis. Alterations in mitochondrial quality control may precede liver pathologies during cachexia.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Michael P Wiggs
- Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Richard A Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA
| | - Aaron R Caldwell
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA
| | - Wen-Juo Lo
- Department of Rehabilitation, Human Resources, and Communication Disorders, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
9
|
Aasen SN, Espedal H, Holte CF, Keunen O, Karlsen TV, Tenstad O, Maherally Z, Miletic H, Hoang T, Eikeland AV, Baghirov H, Olberg DE, Pilkington GJ, Sarkar G, Jenkins RB, Sundstrøm T, Bjerkvig R, Thorsen F. Improved Drug Delivery to Brain Metastases by Peptide-Mediated Permeabilization of the Blood-Brain Barrier. Mol Cancer Ther 2019; 18:2171-2181. [PMID: 31467182 DOI: 10.1158/1535-7163.mct-19-0160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/06/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022]
Abstract
Patients with melanoma have a high risk of developing brain metastasis, which is associated with a dismal prognosis. During early stages of metastasis development, the blood-brain barrier (BBB) is likely intact, which inhibits sufficient drug delivery into the metastatic lesions. We investigated the ability of the peptide, K16ApoE, to permeabilize the BBB for improved treatment with targeted therapies preclinically. Dynamic contrast enhanced MRI (DCE-MRI) was carried out on NOD/SCID mice to study the therapeutic window of peptide-mediated BBB permeabilization. Further, both in vivo and in vitro assays were used to determine K16ApoE toxicity and to obtain mechanistic insight into its action on the BBB. The therapeutic impact of K16ApoE on metastases was evaluated combined with the mitogen-activated protein kinase pathway inhibitor dabrafenib, targeting BRAF mutated melanoma cells, which is otherwise known not to cross the intact BBB. Our results from the DCE-MRI experiments showed effective K16ApoE-mediated BBB permeabilization lasting for up to 1 hour. Mechanistic studies showed a dose-dependent effect of K16ApoE caused by induction of endocytosis. At concentrations above IC50, the peptide additionally showed nonspecific disturbances on plasma membranes. Combined treatment with K16ApoE and dabrafenib reduced the brain metastatic burden in mice and increased animal survival, and PET/CT showed that the peptide also facilitated the delivery of compounds with molecular weights as large as 150 kDa into the brain. To conclude, we demonstrate a transient permeabilization of the BBB, caused by K16ApoE, that facilitates enhanced drug delivery into the brain. This improves the efficacy of drugs that otherwise do not cross the intact BBB.
Collapse
Affiliation(s)
- Synnøve Nymark Aasen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Heidi Espedal
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway.,Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Christopher Florian Holte
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Olivier Keunen
- Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Zaynah Maherally
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Hrvoje Miletic
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tuyen Hoang
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | | | - Habib Baghirov
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dag Erlend Olberg
- Department of Pharmaceutical Chemistry, University of Oslo, Oslo, Norway.,Norwegian Cyclotron Center, Oslo University Hospital, Oslo, Norway
| | - Geoffrey John Pilkington
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gobinda Sarkar
- Division of Experimental Pathology, Mayo Clinic, Rochester, Minnesota
| | - Robert B Jenkins
- Division of Experimental Pathology, Mayo Clinic, Rochester, Minnesota
| | - Terje Sundstrøm
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frits Thorsen
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway. .,Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Rotimi OA, Rotimi SO, Goodrich JM, Adelani IB, Agbonihale E, Talabi G. Time-Course Effects of Acute Aflatoxin B1 Exposure on Hepatic Mitochondrial Lipids and Oxidative Stress in Rats. Front Pharmacol 2019; 10:467. [PMID: 31133854 PMCID: PMC6514194 DOI: 10.3389/fphar.2019.00467] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Aflatoxins are secondary metabolites of certain Aspergillus species, that contaminate staple foods, particularly in developing countries. Aflatoxin B1 (AFB1) is the most toxic and common of the major types of aflatoxins. AFB1 is hepatotoxic and has been implicated in increasing the risk of hepatocellular carcinoma (HCC). We have previously shown that subacute exposure to AFB1 for 7 days disrupts hepatic lipids; therefore, this study determined the time-course effects of acute aflatoxin exposure on hepatic mitochondrial lipids and oxidative stress. To achieve this, thirty male albino rats were randomly assigned to six groups. The groups received an oral dose of 1 mg/kg body weight AFB1 or vehicle only (controls) for one, four, or seven days, respectively. Twenty-four hours after the last dose, the animals were sacrificed and liver excised. Mitochondria and cytosolic fractions were obtained from the liver after which lipids (cholesterol, triacylglycerols) were determined in the mitochondria while biomarkers of oxidative stress (glutathione, glutathione transferase (GST), glutathione peroxidase (GPx), glutathione reductase, nitric oxide (NO), malonaldehyde (MDA), thioredoxin reductase (TR), and superoxide dismutase (SOD) were determined spectrophotometrically in the mitochondria and cytosolic fractions. The expression of genes (Nrf2, Acc, Nqo1, and HmgCoa) were determined using quantitative RT-PCR. Results showed that AFB1 significantly increased mitochondrial cholesterol at day seven (treatment vs. control, p = 0.016). It also increased the concentrations of NO and MDA at day one and day seven while the activity of GPx and concentration of GSH were increased at day seven (p = 0.030) and day one (p = 0.025) alone, respectively, compared to control. The activities of cytosolic GR (p = 0.014), TR (p = 0.046) and GST (p = 0.044) were increased at day seven. AFB1 significantly increased the expression of Nrf2 (p = 0.029) and decreased the expression of Acc (p = 0.005) at day one. This study revealed that AFB1 disrupts hepatic mitochondrial lipids and antioxidant capacity. These changes were dependent on the timing of exposure and did not follow a linear time-course trend. These alterations could be part of the hepatic mitochondria response mechanism to acute AFB1 toxicity.
Collapse
Affiliation(s)
- Oluwakemi A. Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | - Solomon O. Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Isaacson B. Adelani
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | - Emmanuel Agbonihale
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | - Gbemisola Talabi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| |
Collapse
|
11
|
Hypoxic Signaling and Cholesterol Lipotoxicity in Fatty Liver Disease Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2548154. [PMID: 29955245 PMCID: PMC6000860 DOI: 10.1155/2018/2548154] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Cholesterol is the only lipid whose absorption in the gastrointestinal tract is limited by gate-keeping transporters and efflux mechanisms, preventing its rapid absorption and accumulation in the liver and blood vessels. In this review, I explored the current data regarding cholesterol accumulation in liver cells and key mechanisms in cholesterol-induced fatty liver disease associated with the activation of deleterious hypoxic and nitric oxide signal transduction pathways. Although nonalcoholic fatty liver disease (NAFLD) affects both obese and nonobese individuals, the mechanism of NAFLD progression in lean individuals with healthy metabolism is puzzling. Lean NAFLD individuals exhibit normal metabolic responses, implying that liver damage is not associated with impaired metabolism per se and that direct lipotoxic effects are crucial for disease progression. Several redox and oxidant signaling pathways involving cholesterol are at play in fatty liver disease development. These include impairment of the mitochondrial and lysosomal function by cholesterol loading of the inner-cell membranes; formation of cholesterol crystals and hepatocyte degradation; and crown-like structures surrounding degrading hepatocytes, activating Kupffer cells, and evoking inflammation. The current review focuses on the induction of liver inflammation, fibrosis, and steatosis by free cholesterol via the hypoxia-inducible factor 1α (HIF-1α), a main oxygen-sensing transcription factor involved in all stages of NAFLD. Cholesterol loading in hepatocytes can result in chronic HIF-1α activity because of the decreased oxygen availability and excessive production of nitric oxide and mitochondrial reactive oxygen species.
Collapse
|