1
|
Liang B, Burley G, Lin S, Shi YC. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett 2022; 27:72. [PMID: 36058940 PMCID: PMC9441049 DOI: 10.1186/s11658-022-00371-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractOsteoporotic fractures lead to increased disability and mortality in the elderly population. With the rapid increase in the aging population around the globe, more effective treatments for osteoporosis and osteoporotic fractures are urgently required. The underlying molecular mechanisms of osteoporosis are believed to be due to the increased activity of osteoclasts, decreased activity of osteoblasts, or both, which leads to an imbalance in the bone remodeling process with accelerated bone resorption and attenuated bone formation. Currently, the available clinical treatments for osteoporosis have mostly focused on factors influencing bone remodeling; however, they have their own limitations and side effects. Recently, cytokine immunotherapy, gene therapy, and stem cell therapy have become new approaches for the treatment of various diseases. This article reviews the latest research on bone remodeling mechanisms, as well as how this underpins current and potential novel treatments for osteoporosis.
Collapse
|
2
|
Liao H, Zhong Y, Zhou D, Xie Q, Zhang Z, Wu Y, Liu S, Guo W, Cui L, Wu X. Quassinoids from Eurycoma longifolia and their bone formation evaluation in zebrafish, C3H10 cells and silico. Chem Biol Interact 2022; 367:110140. [PMID: 36087817 DOI: 10.1016/j.cbi.2022.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Phytochemicals with bone formation potential in traditional medicines captured more and more attentions due to their advantages to bone loss and fewer side effects. As a famous aphrodisiac phytomedicine, Eurycoma longifolia (EL) has acquired general recognition in improving male sexual health, and thus been considered as traditional medicine for the treatment of androgen-deficient osteoporosis. Although the aqueous extract of EL had been proved to be beneficial to bone loss, the active constituents and the mechanisms underlying the effects are still obscure. The current study performed a chemical investigation on the roots of EL, which resulted in the isolation and identification of ten quassinoids (EL-1-EL-10), and then conducted their osteogenic activity evaluations in vivo zebrafish model with or without dexamethasone (Dex) and in vitro C3H10 cell model. The result displayed that most tested concentrations of EL-1-EL-5 could significantly increase the mineralization areas and integrated optical densities (IODs) of skull in both zebrafish model. The majority tested concentrations of EL-1-EL-5 could also improve the mRNA expression of early osteogenic associated genes ALPL, Runx2a, Sp7 in zebrafish model without Dex, but only a few could accelerate the mRNA expression of late osteogenic associated genes OCN. These results suggested the ability of EL-1-EL-5 to increase bone formation mainly by accelerating osteogenic differentiation at the early stage. The structure-based virtual screening based on the pharmacophores in ePharmaLib, as well as the molecular docking study, implied that the effects of the quassinoids (EL-1-EL-5) on the enhancement of bone formation might be related with improving the content and the activity of androgen through binding with CYP19A, SHBG and AKR1C2, and activating bone metabolism-related ANDR target genes and signal pathways by combining with ANDR directly. Although the assumptions are in silico model-based and further in vitro and in vivo validations are still necessary, we provided a new perspective to explore the potential of EL to be used as an alternative treatment for not only androgen-deficient osteoporosis, but also estrogen-deficient bone loss, by combining with SHBG.
Collapse
Affiliation(s)
- Hongbo Liao
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China
| | - Yanting Zhong
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China
| | - Donghua Zhou
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China; Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China
| | - Qiujie Xie
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, Guangdong Province, PR China
| | - Zhipeng Zhang
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China; Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China
| | - Yangmei Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China; Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China
| | - Sijing Liu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong Province, PR China
| | - Weitao Guo
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong Province, PR China
| | - Liao Cui
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China; Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China.
| | - Xin Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China; Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, PR China; Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, Guangdong Province, PR China.
| |
Collapse
|
3
|
Elevated lncRNA MIAT in peripheral blood mononuclear cells contributes to post-menopausal osteoporosis. Aging (Albany NY) 2022; 14:3143-3154. [PMID: 35381577 PMCID: PMC9037269 DOI: 10.18632/aging.204001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Inflammatory cytokines contribute to the development of osteoporosis with sophisticated mechanisms. Globally alteration of long-chain non-coding RNA was screened in osteoporosis, while we still know little about their functional role in the inflammatory cytokine secretion. In this study, we collected the peripheral blood mononuclear cells (PBMCs) from post-menopausal osteoporosis patients to measure lncRNA MIAT (lncMIAT) expression levels, and explored the molecular mechanism of lncMIAT induced inflammatory cytokine secretion. We identified increased lncMIAT expression in the PBMCs of post-menopausal osteoporosis patients, which was an important predictive biomarker for the diagnosis. LncMIAT expression in PBMCs was positively correlated with the inflammatory cytokine secretion. Mechanism study indicated that lncMIAT increased the expression levels of p38MAPK by crosstalk with miR-216a in PBMCs. The lncMIAT/miR-216a/p38MAPK signaling contributed predominantly to the increased inflammatory cytokine secretion in the PBMCs from postmenopausal osteoporosis. In conclusion, we identified that increased lncMIAT in PBMCs induced inflammatory cytokine secretion, which contributed to the development of post-menopausal osteoporosis. lncMIAT/miR-216a axis was critical for the regulation of AMPK/p38MAPK signaling, which may be a promising therapeutic target for osteoporosis treatment by inflammatory cytokine inhibition.
Collapse
|
4
|
Gong W, Chen X, Shi T, Shao X, An X, Qin J, Chen X, Jiang Q, Guo B. Network Pharmacology-Based Strategy for the Investigation of the Anti-Osteoporosis Effects and Underlying Mechanism of Zhuangguguanjie Formulation. Front Pharmacol 2021; 12:727808. [PMID: 34658868 PMCID: PMC8517248 DOI: 10.3389/fphar.2021.727808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
As the society is aging, the increasing prevalence of osteoporosis has generated huge social and economic impact, while the drug therapy for osteoporosis is limited due to multiple targets involved in this disease. Zhuangguguanjie formulation (ZG) is extensively used in the clinical treatment of bone and joint diseases, but the underlying mechanism has not been fully described. This study aimed to examine the therapeutic effect and potential mechanism of ZG on postmenopausal osteoporosis. The ovariectomized (OVX) mice were treated with normal saline or ZG for 4 weeks after ovariectomy following a series of analyses. The bone mass density (BMD) and trabecular parameters were examined by micro-CT. Bone remodeling was evaluated by the bone histomorphometry analysis and ELISA assay of bone turnover biomarkers in serum. The possible drug–disease common targets were analyzed by network pharmacology. To predict the potential biological processes and related pathways, GO/KEGG enrichment analysis was performed. The effects of ZG on the differentiation phenotype of osteoclasts and osteoblasts and the predicted pathway were verified in vitro. The results showed that ZG significantly improved the bone mass and micro-trabecular architecture in OVX mice compared with untreated OVX mice. ZG could promote bone formation and inhibit bone resorption to ameliorate ovariectomy-induced osteoporosis as evidenced by increased number of osteoblast (N.Ob/Tb.Pm) and decreased number of osteoclast (N.Oc/Tb.Pm) in treated group compared with untreated OVX mice. After identifying potential drug–disease common targets by network pharmacology, GO enrichment analysis predicted that ZG might affect various biological processes including osteoblastic differentiation and osteoclast differentiation. The KEGG enrichment analysis suggested that PI3K/Akt and mTOR signaling pathways could be the possible pathways. Furthermore, the experiments in vitro validated our findings. ZG significantly down-regulated the expression of osteoclast differentiation markers, reduced osteoclastic resorption, and inhibited the phosphorylation of PI3K/Akt, while ZG obviously up-regulated the expression of osteogenic biomarkers, promoted the formation of calcium nodules, and hampered the phosphorylation of 70S6K1/mTOR, which can be reversed by the corresponding pathway activator. Thus, our study suggested that ZG could inhibit the PI3K/Akt signaling pathway to reduce osteoclastic bone resorption as well as hamper the mTORC1/S6K1 signaling pathway to promote osteoblastic bone formation.
Collapse
Affiliation(s)
- Wang Gong
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xingren Chen
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Tianshu Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xiaoyan Shao
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xueying An
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jianghui Qin
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xiang Chen
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Medical School, Nanjing University, Nanjing, China
| | - Baosheng Guo
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Abstract
Osteoporosis is a common chronic condition that markedly increases the risk of fractures. Osteoporotic-related fractures increase morbidity and mortality and impair quality of life. Therefore, a correct approach for fracture prevention seems mandatory. Lifestyle changes should be recommended to all patients, including weight reduction if patients are obese/overweight, increasing physical activity and avoiding alcohol consumption and smoking. Additionally, calcium and vitamin D3 should be prescribed until the vitamin D deficit is resolved. Osteoporosis treatment options mainly include antiresorptives (i.e. estrogens, selective estrogen receptor modulators, bisphosphonates, denosumab) and anabolic agents (i.e. teriparatide, abaloparatide, romosozumab). Although presenting differences in efficacy and side effects, they have all been shown to increase bone mineral density (BMD) and to reduce osteoporotic-related fractures. Monotherapy with antiresorptive agents, particularly oral bisphosphonates, should be considered routinely as the first option for treatment of postmenopausal women. However, in the case of side effects, therapeutic failure or the need for long-term use, anabolic agents may be considered. In high-risk patients, anabolic agents may be considered as an initial therapeutic option. The combination of antiresorptive and anabolic agents may be useful to increase BMD compared with monotherapy, but more information is warranted to determine the effects on fracture risk.
Collapse
Affiliation(s)
- S Palacios
- Director of Palacios Institute of Women's Health, Madrid, Spain
| |
Collapse
|
6
|
Aasebø E, Brenner AK, Hernandez-Valladares M, Birkeland E, Berven FS, Selheim F, Bruserud Ø. Proteomic Comparison of Bone Marrow Derived Osteoblasts and Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22115665. [PMID: 34073480 PMCID: PMC8198503 DOI: 10.3390/ijms22115665] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, and therapeutic targeting of these cells is considered both for malignant and non-malignant diseases. We analyzed global proteomic profiles for osteoblasts derived from ten and MSCs from six healthy individuals, and we quantified 5465 proteins for the osteoblasts and 5420 proteins for the MSCs. There was a large overlap in the profiles for the two cell types; 156 proteins were quantified only in osteoblasts and 111 proteins only for the MSCs. The osteoblast-specific proteins included several extracellular matrix proteins and a network including 27 proteins that influence intracellular signaling (Wnt/Notch/Bone morphogenic protein pathways) and bone mineralization. The osteoblasts and MSCs showed only minor age- and sex-dependent proteomic differences. Finally, the osteoblast and MSC proteomic profiles were altered by ex vivo culture in serum-free media. We conclude that although the proteomic profiles of osteoblasts and MSCs show many similarities, we identified several osteoblast-specific extracellular matrix proteins and an osteoblast-specific intracellular signaling network. Therapeutic targeting of these proteins will possibly have minor effects on MSCs. Furthermore, the use of ex vivo cultured osteoblasts/MSCs in clinical medicine will require careful standardization of the ex vivo handling of the cells.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (E.A.); (A.K.B.)
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (F.S.B.); (F.S.)
| | - Annette K. Brenner
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (E.A.); (A.K.B.)
| | - Maria Hernandez-Valladares
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (F.S.B.); (F.S.)
| | - Even Birkeland
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (F.S.B.); (F.S.)
| | - Frode S. Berven
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (F.S.B.); (F.S.)
| | - Frode Selheim
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (F.S.B.); (F.S.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (E.A.); (A.K.B.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| |
Collapse
|
7
|
Li X, Lin X, Wu Z, Su Y, Liang J, Chen R, Yang X, Hou L, Zhao J, Liu Q, Xu F. Pristimerin Protects Against OVX-Mediated Bone Loss by Attenuating Osteoclast Formation and Activity via Inhibition of RANKL-Mediated Activation of NF-κB and ERK Signaling Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:61-74. [PMID: 33442237 PMCID: PMC7800467 DOI: 10.2147/dddt.s283694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022]
Abstract
Introduction Osteoporosis is an osteolytic bone condition characterized by decreased bone strength and increased bone fragility. It is the result of elevated formation or activity of bone-resorbing osteoclasts. Although current therapeutic agents are efficacious against osteoclast-mediated bone loss, detrimental side effects preclude the long-term use of these agents. Pristimerin (PRI) is a naturally occurring quinone-methide triterpenoid that has been revealed to exert anti-inflammatory and anti-tumor effects via regulating various signaling cascades including NF-κB and MAPK activation. Methods The bone marrow macrophages were used to confirm the anti-osteoclastic and anti-resorptive functions of PRI in vitro. An in vivo ovariectomy (OVX) model was applied to verify the function of PRI protecting bone loss. Results PRI abolished the early activation of NF-κB and ERK MAPK signal cascades thereby thwarting the downstream expression of c-Fos and NFATc1, which prevented the production of mature osteoclasts. In vivo, PRI protects mice against ovariectomy (OVX)-mediated bone loss by diminishing osteoclast formation and bone resorptive activity. Conclusion Our study shows that PRI demonstrates therapeutic potential in the effective treatment against osteoclast-induced osteolytic diseases like osteoporosis.
Collapse
Affiliation(s)
- Xuedong Li
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xixi Lin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Zuoxing Wu
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Jiamin Liang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Runfeng Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xue Yang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Lei Hou
- Department of Cardiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Feng Xu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Department of Subject Planning Shanghai, Ninth People's Hospital Shanghai, Jiaotong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
8
|
Mu H, Pang Y, Liu L, Li F, Wang J. Citral promotes the cell proliferation, differentiation, and calcium mineralization in human osteoblast-like MG-63 cells. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_242_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Kaur M, Nagpal M, Singh M. Osteoblast-n-Osteoclast: Making Headway to Osteoporosis Treatment. Curr Drug Targets 2020; 21:1640-1651. [DOI: 10.2174/1389450121666200731173522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022]
Abstract
Background:
Bone is a dynamic tissue that continuously undergoes the modeling and remodeling
process to maintain its strength and firmness. Bone remodeling is determined by the functioning
of osteoblast and osteoclast cells. The imbalance between the functioning of osteoclast and osteoblast
cells leads to osteoporosis. Osteoporosis is divided into primary and secondary osteoporosis.
Generally, osteoporosis is diagnosed by measuring bone mineral density (BMD) and various osteoblast
and osteoclast cell markers.
Methods:
Relevant literature reports have been studied and data has been collected using various
search engines like google scholar, scihub, sciencedirect, pubmed, etc. A thorough understanding of
the mechanism of bone targeting strategies has been discussed and related literature has been studied
and compiled.
Results:
Bone remodeling process has been described in detail including various approaches for targeting
bone. Several bone targeting moieties have been stated in detail along with their mechanisms.
Targeting of osteoclasts and osteoblasts using various nanocarriers has been discussed in separate sections.
The toxicity issues or Biosafety related to the use of nanomaterials have been covered.
Conclusion:
The treatment of osteoporosis targets the inhibition of bone resorption and the use of
agents that promote bone mineralization to slow disease progression. Current osteoporosis therapy involves
the use of targeting moieties such as bisphosphonates and tetracyclines for targeting various
drugs. Nanotechnology has been used for targeting various drug molecules such as RANKLinhibitors,
parathyroid hormone analogues, estrogen agonists and antagonists, Wnt signaling enhancer
and calcitonin specifically to bone tissue (osteoclast and osteoblasts). So, a multicomponent treatment
strategy targeting both the bone cells will be more effective rather than targeting only osteoclasts and
it will be a potential area of research in bone targeting used to treat osteoporosis.
The first section of the review article covers various aspects of bone targeting. Another section comprises
details of various targeting moieties such as bisphosphonates, tetracyclines; and various
nanocarriers developed to target osteoclast and osteoblast cells and summarized data on in vivo models
has been used for assessment of bone targeting, drawbacks of current strategies and future perspectives.
Collapse
Affiliation(s)
- Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
10
|
Brommage R, Ohlsson C. High Fidelity of Mouse Models Mimicking Human Genetic Skeletal Disorders. Front Endocrinol (Lausanne) 2019; 10:934. [PMID: 32117046 PMCID: PMC7010808 DOI: 10.3389/fendo.2019.00934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The 2019 International Skeletal Dysplasia Society nosology update lists 441 genes for which mutations result in rare human skeletal disorders. These genes code for enzymes (33%), scaffolding proteins (18%), signal transduction proteins (16%), transcription factors (14%), cilia proteins (8%), extracellular matrix proteins (5%), and membrane transporters (4%). Skeletal disorders include aggrecanopathies, channelopathies, ciliopathies, cohesinopathies, laminopathies, linkeropathies, lysosomal storage diseases, protein-folding and RNA splicing defects, and ribosomopathies. With the goal of evaluating the ability of mouse models to mimic these human genetic skeletal disorders, a PubMed literature search identified 260 genes for which mutant mice were examined for skeletal phenotypes. These mouse models included spontaneous and ENU-induced mutants, global and conditional gene knockouts, and transgenic mice with gene over-expression or specific base-pair substitutions. The human X-linked gene ARSE and small nuclear RNA U4ATAC, a component of the minor spliceosome, do not have mouse homologs. Mouse skeletal phenotypes mimicking human skeletal disorders were observed in 249 of the 260 genes (96%) for which comparisons are possible. A supplemental table in spreadsheet format provides PubMed weblinks to representative publications of mutant mouse skeletal phenotypes. Mutations in 11 mouse genes (Ccn6, Cyp2r1, Flna, Galns, Gna13, Lemd3, Manba, Mnx1, Nsd1, Plod1, Smarcal1) do not result in similar skeletal phenotypes observed with mutations of the homologous human genes. These discrepancies can result from failure of mouse models to mimic the exact human gene mutations. There are no obvious commonalities among these 11 genes. Body BMD and/or radiologic dysmorphology phenotypes were successfully identified for 28 genes by the International Mouse Phenotyping Consortium (IMPC). Forward genetics using ENU mouse mutagenesis successfully identified 37 nosology gene phenotypes. Since many human genetic disorders involve hypomorphic, gain-of-function, dominant-negative and intronic mutations, future studies will undoubtedly utilize CRISPR/Cas9 technology to examine transgenic mice having genes modified to exactly mimic variant human sequences. Mutant mice will increasingly be employed for drug development studies designed to treat human genetic skeletal disorders. SIGNIFICANCE Great progress is being made identifying mutant genes responsible for human rare genetic skeletal disorders and mouse models for genes affecting bone mass, architecture, mineralization and strength. This review organizes data for 441 human genetic bone disorders with regard to heredity, gene function, molecular pathways, and fidelity of relevant mouse models to mimic the human skeletal disorders. PubMed weblinks to citations of 249 successful mouse models are provided.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Robert Brommage
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|