1
|
Ouologuem L, Bartel K. Endolysosomal transient receptor potential mucolipins and two-pore channels: implications for cancer immunity. Front Immunol 2024; 15:1389194. [PMID: 38840905 PMCID: PMC11150529 DOI: 10.3389/fimmu.2024.1389194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.
Collapse
Affiliation(s)
| | - Karin Bartel
- Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
2
|
Guan XJ, Deng ZQ, Liu J, Su CF, Tong BCK, Zhu Z, Sreenivasmurthy SG, Kan YX, Lu KJ, Chu CPK, Pi RB, Cheung KH, Iyaswamy A, Song JX, Li M. Corynoxine promotes TFEB/TFE3-mediated autophagy and alleviates Aβ pathology in Alzheimer's disease models. Acta Pharmacol Sin 2024; 45:900-913. [PMID: 38225393 PMCID: PMC11053156 DOI: 10.1038/s41401-023-01197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/09/2023] [Indexed: 01/17/2024] Open
Abstract
Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aβ pathology in AD models.
Collapse
Affiliation(s)
- Xin-Jie Guan
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Zhi-Qiang Deng
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Cheng-Fu Su
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Benjamin Chun-Kit Tong
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhou Zhu
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yu-Xuan Kan
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Ke-Jia Lu
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Carol Pui-Kei Chu
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Rong-Biao Pi
- School of Medicine, Sun Yat-sen University (Shenzhen), Shenzhen, 518107, China
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China.
| | - Ju-Xian Song
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Min Li
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Pastore N, Annunziata F, Colonna R, Maffia V, Giuliano T, Custode BM, Lombardi B, Polishchuk E, Cacace V, De Stefano L, Nusco E, Sorrentino NC, Piccolo P, Brunetti-Pierri N. Increased expression or activation of TRPML1 reduces hepatic storage of toxic Z alpha-1 antitrypsin. Mol Ther 2023; 31:2651-2661. [PMID: 37394797 PMCID: PMC10492024 DOI: 10.1016/j.ymthe.2023.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Mutant Z alpha-1 antitrypsin (ATZ) accumulates in globules in the liver and is the prototype of proteotoxic hepatic disease. Therapeutic strategies aiming at clearance of polymeric ATZ are needed. Transient receptor potential mucolipin-1 (TRPML1) is a lysosomal Ca2+ channel that maintains lysosomal homeostasis. In this study, we show that by increasing lysosomal exocytosis, TRPML1 gene transfer or small-molecule-mediated activation of TRPML1 reduces hepatic ATZ globules and fibrosis in PiZ transgenic mice that express the human ATZ. ATZ globule clearance induced by TRPML1 occurred without increase in autophagy or nuclear translocation of TFEB. Our results show that targeting TRPML1 and lysosomal exocytosis is a novel approach for treatment of the liver disease due to ATZ and potentially other diseases due to proteotoxic liver storage.
Collapse
Affiliation(s)
- Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy.
| | | | - Rita Colonna
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Veronica Maffia
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Teresa Giuliano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Bruno Maria Custode
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Bernadette Lombardi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Vincenzo Cacace
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Lucia De Stefano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy.
| |
Collapse
|