1
|
Wang Y, Lao Y, Li R, You C, Qing L, Xiao X, Liu S, Wang W, Zhao Y, Dong Z. Network pharmacological analysis and experimental study of melatonin in chronic prostatitis/chronic pelvic pain syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8691-8706. [PMID: 38822120 DOI: 10.1007/s00210-024-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
This study is aimed at exploring the potential mechanisms of melatonin (MT) in treating chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) using network pharmacology and experimental study. The target genes of MT were acquired from the Swiss Target Prediction, SuperPred, SEA, and PharmMapper databases, and the CP/CPPS targets were collected based on OMIM, DisGeNET, and GeneCards databases. The intersection of MT and CP/CPPS target genes was analyzed. A PPI network was constructed using Cytoscape to identify core targets. The shared targets underwent GO and KEGG enrichment analyses by Using R software. Molecular docking of MT with core targets was performed using AutoDock and PyMOL. GROMACS software was used for molecular dynamics simulation. And using cell experiments to verify the potential effect of MT in CP/CPPS. Network pharmacology analysis reveals 284 shared targets between MT and CP/CPPS, with AKT1, SRC, HSP90AA1, PTGS2, BCL2L1, ALB, CASP3, NFKB1, HIF1A, and ESR1 identified as key targets. Enrichment analysis indicates that MT affects CP/CPPS through various biological processes, and pathway analysis emphasizes the significance of PI3K-Akt, MAPK, Ras, FoxO, HIF-1, EGFR, and apoptosis pathways. Molecular docking confirms strong binding between MT and core targets. It is worth noting that the molecular dynamics simulation showed that the average binding free energy of AKT1, PTGS2, ALB, HSP90AA1 proteins, and MT was - 26.15, - 29.48, - 18.59, and - 20.09 kcal/mol, respectively. These results indicated that AKT1, PTGS2, ALB, and HSP90AA1 proteins were strongly bound to MT. Cell experiments demonstrate that MT can inhibit the secretion of IL-1β, IL-6, and TNF-α in LPS-induced RWPE-1 cells, alleviate inflammation, and suppress cell apoptosis and oxidative stress. Network pharmacology, molecular docking, molecular dynamics simulation, and cell experiments showed that MT could play a role in CP/CPPS by regulating multiple targets and pathways. These findings provide an important scientific basis for further exploration of the molecular mechanism and clinical application of MT in CP/CPPS treatment and are expected to provide new ideas and directions for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Yongfeng Lao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Rongxin Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Chengyu You
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Liangliang Qing
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Xi Xiao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Shuai Liu
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Wenyun Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Yu Zhao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Zhilong Dong
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China.
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
2
|
Jefferi NES, Shamhari A‘A, Noor Azhar NKZ, Shin JGY, Kharir NAM, Azhar MA, Hamid ZA, Budin SB, Taib IS. The Role of ERα and ERβ in Castration-Resistant Prostate Cancer and Current Therapeutic Approaches. Biomedicines 2023; 11:biomedicines11030826. [PMID: 36979805 PMCID: PMC10045750 DOI: 10.3390/biomedicines11030826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Castration-resistant prostate cancer, or CRPC, is an aggressive stage of prostate cancer (PCa) in which PCa cells invade nearby or other parts of the body. When a patient with PCa goes through androgen deprivation therapy (ADT) and the cancer comes back or worsens, this is called CRPC. Instead of androgen-dependent signalling, recent studies show the involvement of the estrogen pathway through the regulation of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in CRPC development. Reduced levels of testosterone due to ADT lead to low ERβ functionality in inhibiting the proliferation of PCa cells. Additionally, ERα, which possesses androgen independence, continues to promote the proliferation of PCa cells. The functions of ERα and ERβ in controlling PCa progression have been studied, but further research is needed to elucidate their roles in promoting CRPC. Finding new ways to treat the disease and stop it from becoming worse will require a clear understanding of the molecular processes that can lead to CRPC. The current review summarizes the underlying processes involving ERα and ERβ in developing CRPC, including castration-resistant mechanisms after ADT and available medication modification in mitigating CRPC progression, with the goal of directing future research and treatment.
Collapse
Affiliation(s)
- Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Khayrin Zulaikha Noor Azhar
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Joyce Goh Yi Shin
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Annisa Mohd Kharir
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Muhammad Afiq Azhar
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Correspondence: ; Tel.: +0603-92897608
| |
Collapse
|
3
|
Lafront C, Germain L, Weidmann C, Audet-Walsh É. A Systematic Study of the Impact of Estrogens and Selective Estrogen Receptor Modulators on Prostate Cancer Cell Proliferation. Sci Rep 2020; 10:4024. [PMID: 32132580 PMCID: PMC7055213 DOI: 10.1038/s41598-020-60844-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 01/10/2023] Open
Abstract
The estrogen signaling pathway has been reported to modulate prostate cancer (PCa) progression through the activity of estrogen receptors α and β (ERα and ERβ). Given that selective estrogen receptor modulators (SERMs) are used to treat breast cancer, ERs have been proposed as attractive therapeutic targets in PCa. However, many inconsistencies regarding the expression of ERs and the efficacy of SERMs for PCa treatment exist, notably due to the use of ERβ antibodies lacking specificity and treatments with high SERM concentrations leading to off-target effects. To end this confusion, our objective was to study the impact of estrogenic and anti-estrogenic ligands in well-studied in vitro PCa models with appropriate controls, dosages, and ER subtype-specific antibodies. When using physiologically relevant concentrations of nine estrogenic/anti-estrogenic compounds, including five SERMs, we observed no significant modulation of PCa cell proliferation. Using RNA-seq and validated antibodies, we demonstrate that these PCa models do not express ERs. In contrast, RNA-seq from PCa samples from patients have detectable expression of ERα. Overall, our study reveals that commonly used PCa models are inappropriate to study ERs and indicate that usage of alternative models is essential to properly assess the roles of the estrogen signaling pathway in PCa.
Collapse
Affiliation(s)
- Camille Lafront
- Department of molecular medicine, Faculty of Medicine, Université Laval, Québec City, G1V 0A6, Canada
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
| | - Lucas Germain
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
- Department of biochemistry, microbiology and bioinformatics, Faculty of Sciences and Engineering, Université Laval, Québec City, G1V 0A6, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
| | - Étienne Audet-Walsh
- Department of molecular medicine, Faculty of Medicine, Université Laval, Québec City, G1V 0A6, Canada.
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada.
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada.
| |
Collapse
|
4
|
Compounds from Cynomorium songaricum with Estrogenic and Androgenic Activities Suppress the Oestrogen/Androgen-Induced BPH Process. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6438013. [PMID: 28588640 PMCID: PMC5447316 DOI: 10.1155/2017/6438013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/09/2017] [Indexed: 11/22/2022]
Abstract
Objective To investigate the phytoestrogenic and phytoandrogenic activities of compounds isolated from CS and uncover the role of CS in prevention of oestrogen/androgen-induced BPH. Methods Cells were treated with CS compounds, and immunofluorescence assay was performed to detect the nuclear translocation of ERα or AR in MCF-7 or LNCaP cells; luciferase reporter assay was performed to detect ERs or AR transcriptional activity in HeLa or AD293 cells; MTT assay was performed to detect the cell proliferation of MCF-7 or LNCaP cells. Oestrogen/androgen-induced BPH model was established in rat and the anti-BPH, anti-estrogenic, and anti-androgenic activities of CS in vivo were further investigated. Results The nuclear translocation of ERα was stimulated by nine CS compounds, three of which also stimulated AR translocation. The transcriptional activities of ERα and ERβ were induced by five compounds, within which only ECG induced AR transcriptional activity as well. Besides, ECG stimulated the proliferation of both MCF-7 cells and LNCaP cells. CS extract suppressed oestrogen/androgen-induced BPH progress in vivo by downregulation of E2 and T level in serum and alteration of the expressions of ERα, ERβ, and AR in the prostate. Conclusion Our data demonstrates that compounds from CS exhibit phytoestrogenic and phytoandrogenic activities, which may contribute to inhibiting the oestrogen/androgen-induced BPH development.
Collapse
|
5
|
Liu TT, Grubisha MJ, Frahm KA, Wendell SG, Liu J, Ricke WA, Auchus RJ, DeFranco DB. Opposing Effects of Cyclooxygenase-2 (COX-2) on Estrogen Receptor β (ERβ) Response to 5α-Reductase Inhibition in Prostate Epithelial Cells. J Biol Chem 2016; 291:14747-60. [PMID: 27226548 DOI: 10.1074/jbc.m115.711515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/06/2022] Open
Abstract
Current pharmacotherapies for symptomatic benign prostatic hyperplasia (BPH), an androgen receptor-driven, inflammatory disorder affecting elderly men, include 5α-reductase (5AR) inhibitors (i.e. dutasteride and finasteride) to block the conversion of testosterone to the more potent androgen receptor ligand dihydrotestosterone. Because dihydrotestosterone is the precursor for estrogen receptor β (ERβ) ligands, 5AR inhibitors could potentially limit ERβ activation, which maintains prostate tissue homeostasis. We have uncovered signaling pathways in BPH-derived prostate epithelial cells (BPH-1) that are impacted by 5AR inhibition. The induction of apoptosis and repression of the cell adhesion protein E-cadherin by the 5AR inhibitor dutasteride requires both ERβ and TGFβ. Dutasteride also induces cyclooxygenase type 2 (COX-2), which functions in a negative feedback loop in TGFβ and ERβ signaling pathways as evidenced by the potentiation of apoptosis induced by dutasteride or finasteride upon pharmacological inhibition or shRNA-mediated ablation of COX-2. Concurrently, COX-2 positively impacts ERβ action through its effect on the expression of a number of steroidogenic enzymes in the ERβ ligand metabolic pathway. Therefore, effective combination pharmacotherapies, which have included non-steroidal anti-inflammatory drugs, must take into account biochemical pathways affected by 5AR inhibition and opposing effects of COX-2 on the tissue-protective action of ERβ.
Collapse
Affiliation(s)
- Teresa T Liu
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Melanie J Grubisha
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Krystle A Frahm
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Stacy G Wendell
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jiayan Liu
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, and
| | - William A Ricke
- Department of Urology, University of Wisconsin, Madison, Wisconsin 53705
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, and
| | - Donald B DeFranco
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
6
|
Computational study of estrogen receptor-alpha antagonist with three-dimensional quantitative structure-activity relationship, support vector regression, and linear regression methods. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2013; 2013:743139. [PMID: 25505989 PMCID: PMC4245501 DOI: 10.1155/2013/743139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 03/29/2013] [Indexed: 02/07/2023]
Abstract
Human estrogen receptor (ER) isoforms, ERα and ERβ, have long been an important focus in the field of biology. To better understand the structural features associated with the binding of ERα ligands to ERα and modulate their function, several QSAR models, including CoMFA, CoMSIA, SVR, and LR methods, have been employed to predict the inhibitory activity of 68 raloxifene derivatives. In the SVR and LR modeling, 11 descriptors were selected through feature ranking and sequential feature addition/deletion to generate equations to predict the inhibitory activity toward ERα. Among four descriptors that constantly appear in various generated equations, two agree with CoMFA and CoMSIA steric fields and another two can be correlated to a calculated electrostatic potential of ERα.
Collapse
|
7
|
Hartman J, Ström A, Gustafsson JÅ. Current concepts and significance of estrogen receptor β in prostate cancer. Steroids 2012; 77:1262-6. [PMID: 22824289 DOI: 10.1016/j.steroids.2012.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/03/2012] [Accepted: 07/09/2012] [Indexed: 11/29/2022]
Abstract
An increasing amount of evidence points at important roles for estrogen receptors in prostate carcinogenesis and progression. Of the two estrogen receptors, estrogen receptor β is the most prominent within the prostate gland. Although there is much yet to be known, the findings from the discovery of the receptor in 1996 until now point at a role of the receptor in maintaining differentiation and reducing cellular proliferation in the prostate. Moreover, estrogen receptor β is the main target for phytoestrogens, perhaps at least partially explaining the difference in incidence of prostate cancer in the Western world compared to Asia where the intake of soy-based, phytoestrogen-rich food is higher. The tumor suppressive capability of estrogen receptor β makes it a promising drug target for the treatment and prevention of prostate cancer. This review will focus on different aspects of estrogen receptor signaling and prostate cancer.
Collapse
Affiliation(s)
- Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | |
Collapse
|
8
|
Powell E, Shanle E, Brinkman A, Li J, Keles S, Wisinski KB, Huang W, Xu W. Identification of estrogen receptor dimer selective ligands reveals growth-inhibitory effects on cells that co-express ERα and ERβ. PLoS One 2012; 7:e30993. [PMID: 22347418 PMCID: PMC3274540 DOI: 10.1371/journal.pone.0030993] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/28/2011] [Indexed: 12/31/2022] Open
Abstract
Estrogens play essential roles in the progression of mammary and prostatic diseases. The transcriptional effects of estrogens are transduced by two estrogen receptors, ERα and ERβ, which elicit opposing roles in regulating proliferation: ERα is proliferative while ERβ is anti-proliferative. Exogenous expression of ERβ in ERα-positive cancer cell lines inhibits cell proliferation in response to estrogen and reduces xenografted tumor growth in vivo, suggesting that ERβ might oppose ERα's proliferative effects via formation of ERα/β heterodimers. Despite biochemical and cellular evidence of ERα/β heterodimer formation in cells co-expressing both receptors, the biological roles of the ERα/β heterodimer remain to be elucidated. Here we report the identification of two phytoestrogens that selectively activate ERα/β heterodimers at specific concentrations using a cell-based, two-step high throughput small molecule screen for ER transcriptional activity and ER dimer selectivity. Using ERα/β heterodimer-selective ligands at defined concentrations, we demonstrate that ERα/β heterodimers are growth inhibitory in breast and prostate cells which co-express the two ER isoforms. Furthermore, using Automated Quantitative Analysis (AQUA) to examine nuclear expression of ERα and ERβ in human breast tissue microarrays, we demonstrate that ERα and ERβ are co-expressed in the same cells in breast tumors. The co-expression of ERα and ERβ in the same cells supports the possibility of ERα/β heterodimer formation at physio- and pathological conditions, further suggesting that targeting ERα/β heterodimers might be a novel therapeutic approach to the treatment of cancers which co-express ERα and ERβ.
Collapse
Affiliation(s)
- Emily Powell
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Erin Shanle
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Ashley Brinkman
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jun Li
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Sunduz Keles
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Kari B. Wisinski
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Cleve A, Fritzemeier KH, Haendler B, Heinrich N, Möller C, Schwede W, Wintermantel T. Pharmacology and clinical use of sex steroid hormone receptor modulators. Handb Exp Pharmacol 2012:543-587. [PMID: 23027466 DOI: 10.1007/978-3-642-30726-3_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sex steroid receptors are ligand-triggered transcription factors. Oestrogen, progesterone and androgen receptors form, together with the glucocorticoid and mineralocorticoid receptors, a subgroup of the superfamily of nuclear receptors. They share a common mode of action, namely translating a hormone-i.e. a small-molecule signal-from outside to changes in gene expression and cell fate, and thereby represent "natural" pharmacological targets.For pharmacological therapy, these receptors have originally been addressed by hormones and synthetic hormone analogues in order to overcome pathologies related to deficiencies in the natural ligands. Another major use for female sex hormone receptor modulators is oral contraception, i.e. birth control.On the other side, blocking the activity of sex steroid receptors has become an established way to treat hormone-dependent malignancies, such as breast and prostate cancer.In this review, we will discuss how the experience gained from the classical pharmacology of these receptors and their molecular similarities led to new options for the treatment of gender-specific diseases and highlight recent progress in medicinal chemistry of sex hormone-modulating drugs.
Collapse
Affiliation(s)
- A Cleve
- Bayer Pharma AG, Muellerstr. 178, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Lu L, Zhang H, Lv N, Ma X, Tian L, Hu X, Liu S, Xu M, Weng Q, Watanabe G, Taya K. Immunolocalization of Androgen Receptor, Aromatase Cytochrome P450, Estrogen Receptor Alpha and Estrogen Receptor Beta Proteins during the Breeding Season in Scent Glands of Muskrats (Ondatra zibethicus). Zoolog Sci 2011; 28:727-32. [DOI: 10.2108/zsj.28.727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Ellem SJ, Risbridger GP. Aromatase and regulating the estrogen:androgen ratio in the prostate gland. J Steroid Biochem Mol Biol 2010; 118:246-51. [PMID: 19896534 DOI: 10.1016/j.jsbmb.2009.10.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/25/2009] [Accepted: 10/30/2009] [Indexed: 02/04/2023]
Abstract
Although androgens and estrogens both play significant roles in the prostate, it is their combined action--and specifically their balance--that is critically important in maintaining prostate health and tissue homeostasis in adulthood. In men, serum testosterone levels drop by about 35% between the ages of 21 and 85 while estradiol levels remain constant or increase. This changing androgen:estrogen (T:E) ratio has been implicated in the development of benign and malignant prostate disease. The production of estrogens from androgens is mediated by the aromatase enzyme, the aberrant expression of which plays a critical role in the development of malignancy in a number of tissues. The normal prostate expresses aromatase within the stroma, while there is an induction of epithelial expression in malignancy with altered promoter utilisation. This may ultimately lead to an altered T:E ratio that is associated with the development of disease. The role of estrogen and the T:E balance in the prostate is further complicated by the differential actions of both estrogen receptors, alpha and beta. Stimulation of ERalpha leads to aberrant proliferation, inflammation and pre-malignant pathology; whereas activation of ERbeta appears to have beneficial effects regarding cellular proliferation and a putative protective role against carcinogenesis. Overall, these data reveal that homeostasis in the normal prostate involves a finely tuned balance between androgens and estrogens. This has identified estrogen, in addition to androgens, as integral to maintaining normal prostate health, but also as an important mediator of prostate disease.
Collapse
Affiliation(s)
- Stuart J Ellem
- Centre for Urological Research, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
12
|
Li X, Rahman N. Estrogens and bladder outlet obstruction. J Steroid Biochem Mol Biol 2010; 118:257-63. [PMID: 19900549 DOI: 10.1016/j.jsbmb.2009.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/20/2009] [Accepted: 10/30/2009] [Indexed: 01/17/2023]
Abstract
Increasing evidence indicates a direct interrelationship between benign prostatic hyperplasia and chronic non-bacterial prostatic inflammation in the development of human voiding dysfunction in aging male, which gradually transforms to bladder outlet obstruction (BOO). Increased prevalence of BOO along with the aging process further suggests that estrogen or more precisely decreased androgen to estrogen ratio in serum is involved in the pathogenesis of BOO. In this review, we will analyze the hormonal causes, clinical relevance, and biologically relevant estrogen-modulated animal models potential for BOO study. In light of the data presented in this review, it becomes apparent that direct inhibition of estrogen action may provide important pharmaceutical treatment of the BOO.
Collapse
Affiliation(s)
- Xiangdong Li
- State Key Laboratory of the Agro-Biotechnology, Faculty of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| | | |
Collapse
|