1
|
Magkouta S, Pappas A, Moschos C, Vazakidou ME, Psarra K, Kalomenidis I. Icmt inhibition exerts anti-angiogenic and anti-hyperpermeability activities impeding malignant pleural effusion. Oncotarget 2018; 7:20249-59. [PMID: 26959120 PMCID: PMC4991451 DOI: 10.18632/oncotarget.7912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/14/2016] [Indexed: 12/28/2022] Open
Abstract
Small GTPases are pivotal regulators of several aspects of tumor progression. Their implication in angiogenesis, vascular permeability and tumor-associated inflammatory responses is relevant to the pathobiology of Malignant Pleural Effusion (MPE). Inhibition of isoprenylcysteine carboxylmethyltransferase (Icmt) abrogates small GTPase activation. We therefore hypothesized that cysmethynil, an Icmt inhibitor would limit pleural fluid accumulation in two models, a lung-adenocarcinoma and a mesothelioma-induced MPE. Cysmethynil significantly reduced MPE volume in both models and tumor burden in the adenocarcinoma model. It inhibited pleural vascular permeability and tumor angiogenesis in vivo and reduced endothelial cell proliferation, migration and tube formation in vitro. Cysmethynil also promoted M1 anti-tumor macrophage homing in the pleural space in vivo, and inhibited tumor-induced polarization of macrophages towards a M2 phenotype in vitro. In addition, the inhibitor promoted adenocarcinoma cell apoptosis in vivo. Inhibition of small GTPase might thus represent a valuable strategy for pharmacotherapy of MPE.
Collapse
Affiliation(s)
- Sophia Magkouta
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Apostolos Pappas
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Charalampos Moschos
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Maria-Eleni Vazakidou
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Ioannis Kalomenidis
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
2
|
Zou T, Mao X, Yin J, Li X, Chen J, Zhu T, Li Q, Zhou H, Liu Z. Emerging roles of RAC1 in treating lung cancer patients. Clin Genet 2016; 91:520-528. [PMID: 27790713 DOI: 10.1111/cge.12908] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
Abstract
The Ras-related C3 botulinum toxin substrate 1 (RAC1), a member of the Rho family of small guanosine triphosphatases, is critical for many cellular activities, such as phagocytosis, adhesion, migration, motility, cell proliferation, and axonal growth. In addition, RAC1 plays an important role in cancer angiogenesis, invasion, and migration, and it has been reported to be related to most cancers, such as breast cancer, gastric cancer, testicular germ cell cancer, and lung cancer. Recently, the therapeutic target of RAC1 in cancer has been investigated. In addition, some investigations have shown that inhibition of RAC1 can reverse drug-resistance in non-small cell lung cancer. In this review, we summarize the recent advances in understanding the role of RAC1 in lung cancer and the underlying mechanisms and discuss its value in clinical therapy.
Collapse
Affiliation(s)
- T Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - X Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - J Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - X Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - J Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - T Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Q Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - H Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Z Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| |
Collapse
|
3
|
Xie CR, Sun HG, Sun Y, Zhao WX, Zhang S, Wang XM, Yin ZY. Significance of genetic variants in DLC1 and their association with hepatocellular carcinoma. Mol Med Rep 2015; 12:4203-4209. [PMID: 26095787 PMCID: PMC4526053 DOI: 10.3892/mmr.2015.3970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 04/20/2015] [Indexed: 12/21/2022] Open
Abstract
DLC1 has been shown to be downregulated or absent in hepatocellular carcinoma (HCC) and is associated with tumorigenesis and development. However, only a small number of studies have focused on genetic variations of DLC1. The present study performed exon sequencing for the DLC1 gene in HCC tissue samples from 105 patients to identify functional genetic variation of DLC1 and its association with HCC susceptibility, clinicopathological features and prognosis. A novel missense mutation and four non-synonymous single nucleotide polymorphisms (SNPs; rs3816748, rs11203495, rs3816747 and rs532841) were identified. A significant correlation of rs3816747 polymorphisms with HCC susceptibility was identified. Compared to individuals with the GG genotype of rs3816747, those with the GA (odds ratio (OR)=0.486; P=0.037) or GA+AA genotype (OR=0.51; P=0.039) were associated with a significantly decreased HCC risk. Furthermore, patients with the GC+CC genotype of rs3816748, the TC+CC genotype of rs11203495 or the GA+AA genotype of rs3816747 had small-sized tumors compared with those carrying the wild-type genotype. No significant association of DLC1 SNPs with the patients' prognosis was found. These results indicated that genetic variations in the DLC1 gene may confer a risk for HCC.
Collapse
Affiliation(s)
- Cheng-Rong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Hong-Guang Sun
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Yu Sun
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Wen-Xiu Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Sheng Zhang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Xiao-Min Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
4
|
Cardama GA, Comin MJ, Hornos L, Gonzalez N, Defelipe L, Turjanski AG, Alonso DF, Gomez DE, Menna PL. Preclinical development of novel Rac1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents Med Chem 2015; 14:840-51. [PMID: 24066799 PMCID: PMC4104455 DOI: 10.2174/18715206113136660334] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/21/2013] [Accepted: 09/15/2013] [Indexed: 11/22/2022]
Abstract
Rho GTPases play a key role in the regulation of multiple essential cellular processes, including actin dynamics, gene transcription and cell cycle progression. Aberrant activation of Rac1, a member of Rho family of small GTPases, is associated with tumorigenesis, cancer progression, invasion and metastasis. Particularly, Rac1 is overexpressed and hyperactivated in highly aggressive breast cancer. Thus, Rac1 appears to be a promising and relevant target for the development of novel anticancer drugs. We identified the novel Rac1 inhibitor ZINC69391 through a docking-based virtual library screening targeting Rac1 activation by GEFs. This compound was able to block Rac1 interaction with its GEF Tiam1, prevented EGF-induced Rac1 activation and inhibited cell proliferation, cell migration and cell cycle progression in highly aggressive breast cancer cell lines. Moreover, ZINC69391 showed an in vivo antimetastatic effect in a syngeneic animal model. We further developed the novel analog 1A-116 by rational design and showed to be specific and more potent than the parental compound in vitro and interfered Rac1-P-Rex1 interaction. We also showed an enhanced in vivo potency of 1A-116 analog. These results show that we have developed novel Rac1 inhibitors that may be used as a novel anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pablo Lorenzano Menna
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes. Roque Saenz Pena 352, Bernal B1876BXD Buenos Aires, Argentina.
| |
Collapse
|
5
|
Jordan SN, Canman JC. Rho GTPases in animal cell cytokinesis: an occupation by the one percent. Cytoskeleton (Hoboken) 2012; 69:919-30. [PMID: 23047851 DOI: 10.1002/cm.21071] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/17/2022]
Abstract
Rho GTPases are molecular switches that elicit distinct effects on the actomyosin cytoskeleton to accurately promote cytokinesis. Although they represent less than 1% of the human genome, Rho GTPases exert disproportionate control over cell division. Crucial to this master regulatory role is their localized occupation of specific domains of the cell to ensure the assembly of a contractile ring at the proper time and place. RhoA occupies the division plane and is the central positive Rho family regulator of cytokinesis. Rac1 is a negative regulator of cytokinesis and is inactivated within the division plane while active Rac1 occupies the cell poles. Cdc42 regulation during cytokinesis is less studied, but thus far a clear role has only been shown during polar body emission. Here we review what is known about the function of Rho family GTPases during cell division, as well as their upstream regulators and known downstream cytokinetic effectors.
Collapse
Affiliation(s)
- Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|