1
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
2
|
Mosienko V, Matthes S, Hirth N, Beis D, Flinders M, Bader M, Hansson AC, Alenina N. Adaptive changes in serotonin metabolism preserve normal behavior in mice with reduced TPH2 activity. Neuropharmacology 2014; 85:73-80. [PMID: 24863038 DOI: 10.1016/j.neuropharm.2014.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/02/2014] [Accepted: 05/10/2014] [Indexed: 01/29/2023]
Abstract
Polymorphisms in the TPH2 gene coding for the serotonin synthesizing enzyme in the brain are considered as risk factors associated with depression and anxiety in humans. However, whether a certain variation in the TPH2 gene leads to decreased brain serotonin production and development of psychological abnormalities remains unresolved. We generated a new mouse model, carrying one Tph2-null allele and one Tph21473G-allele, coding for a hypoactive form of the enzyme. We tested these mice along with C57BL/6 mice (Tph2C/C), congenic C57BL/6 mice homozygous for the Tph21473G-allele (Tph2G/G), and heterozygous Tph2-deficient mice (Tph2C/-) for anxiety- and depression-like behavior, and evaluated brain serotonin metabolism and 5-HT1AR signaling by high-performance liquid chromatography and quantitative autoradiography, respectively. Progressive reduction in TPH2 activity had no effect on emotional behavior, and only slightly affected brain serotonin levels. However, serotonin degradation rate was drastically decreased in mice with reduced TPH2 activity, thereby compensating for the lowered rate of serotonin production in these mice. In addition, the hypothermic response to the 5-HT1AR agonist, 8-OH-DPAT, was attenuated in mice with reduced serotonin production. In contrast, 5-HT1A autoreceptor density and G-protein coupling were not changed in mice with gradual decrease in central serotonin. Taken together, these data suggest that in conditions of reduced serotonin production lowered serotonin degradation rate contributes to the maintenance of brain serotonin at levels sufficient for adequate behavior responses. These findings reveal that decreased TPH2 activity cannot be considered a reliable predisposition factor for impaired emotional behavior.
Collapse
Affiliation(s)
| | - Susann Matthes
- Max-Delbrueck-Center for Molecular Medicine, Berlin-Buch, Germany; Humboldt-Universität Berlin, Berlin, Germany
| | - Natalie Hirth
- Institute of Psychopharmacology at the Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel Beis
- Max-Delbrueck-Center for Molecular Medicine, Berlin-Buch, Germany; Humboldt-Universität Berlin, Berlin, Germany
| | - Michael Flinders
- Max-Delbrueck-Center for Molecular Medicine, Berlin-Buch, Germany
| | - Michael Bader
- Max-Delbrueck-Center for Molecular Medicine, Berlin-Buch, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology at the Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Natalia Alenina
- Max-Delbrueck-Center for Molecular Medicine, Berlin-Buch, Germany.
| |
Collapse
|
3
|
The expression of vesicular glutamate transporter 3 and vesicular monoamine transporter 2 induced by brain-derived neurotrophic factor in dorsal root ganglion neurons in vitro. Brain Res Bull 2014; 100:93-106. [DOI: 10.1016/j.brainresbull.2013.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/11/2013] [Accepted: 11/27/2013] [Indexed: 12/11/2022]
|
4
|
SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Aspects Med 2013; 34:360-72. [PMID: 23506877 DOI: 10.1016/j.mam.2012.07.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/29/2012] [Indexed: 01/06/2023]
Abstract
The exocytotic release of neurotransmitters requires active transport into synaptic vesicles and other types of secretory vesicles. Members of the SLC18 family perform this function for acetylcholine (SLC18A3, the vesicular acetylcholine transporter or VAChT) and monoamines such as dopamine and serotonin (SLC18A1 and 2, the vesicular monoamine transporters VMAT1 and 2, respectively). To date, no specific diseases have been attributed to a mutation in an SLC18 family member; however, polymorphisms in SLC18A1 and SLC18A2 may confer risk for some neuropsychiatric disorders. Additional members of this family include SLC18A4, expressed in insects, and SLC18B1, the function of which is not known. SLC18 is part of the Drug:H(+) Antiporter-1 Family (DHA1, TCID 2.A.1.2) within the Major Facilitator Superfamily (MFS, TCID 2.A.1).
Collapse
|
5
|
Yanamadala V, Negoro H, Denker BM. Heterotrimeric G proteins and apoptosis: intersecting signaling pathways leading to context dependent phenotypes. Curr Mol Med 2009; 9:527-45. [PMID: 19601805 PMCID: PMC2822437 DOI: 10.2174/156652409788488784] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Apoptosis, a programmed cell death mechanism, is a fundamental process during the normal development and somatic maintenance of all multicellular organisms and thus is highly conserved and tightly regulated through numerous signaling pathways. Apoptosis is of particular clinical importance as its dysregulation contributes significantly to numerous human diseases, primarily through changes in the expression and activation of key apoptotic regulators. Each of the four families of heterotrimeric G proteins (G(s), G(i/o), G(q/11) and G(12/13)) has been implicated in numerous cellular signaling processes, including proliferation, transformation, migration, differentiation, and apoptosis. Heterotrimeric G protein signaling is an important but not widely studied mechanism regulating apoptosis. G protein Signaling and Apoptosis broadly cover two large bodies of literature and share numerous signaling pathways. Examination of the intersection between these two areas is the focus of this review. Several studies have implicated signaling through each of the four heterotrimeric G protein families to regulate apoptosis within numerous disease contexts, but the mechanism(s) are not well defined. Each G protein family has been shown to stimulate and/or inhibit apoptosis in a context-dependent fashion through regulating numerous downstream effectors including the Bcl-2 family, NF-kappaB, PI3 Kinase, MAP Kinases, and small GTPases. These cell-type specific and G protein coupled receptor dependent effects have led to a complex body of literature of G protein regulation of apoptosis. Here, we review the literature and summarize apoptotic signaling through each of the four heterotrimeric G protein families (and the relevant G protein coupled receptors), and discuss limitations and future directions for research on regulating apoptosis through G protein coupled mechanisms. Continued investigation in this field is essential for the identification of important targets for pharmacological intervention in numerous diseases.
Collapse
Affiliation(s)
- Vijay Yanamadala
- Renal Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Hideyuki Negoro
- Renal Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradley M. Denker
- Renal Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Brunk I, Blex C, Speidel D, Brose N, Ahnert-Hilger G. Ca2+-dependent activator proteins of secretion promote vesicular monoamine uptake. J Biol Chem 2008; 284:1050-6. [PMID: 19008227 DOI: 10.1074/jbc.m805328200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)-dependent activator proteins of secretion (CAPS) 1 and 2 are essential regulators of synaptic vesicle and large dense core vesicle priming in mammalian neurons and neuroendocrine cells. CAPS1 appears to have an additional and as yet unexplained function in vesicular catecholamine uptake or storage as CAPS1-deficient chromaffin cells exhibit strongly reduced vesicular catecholamine levels. Here we describe a role of CAPS proteins in vesicular monoamine uptake. Both CAPS1 and CAPS2 promote monoamine uptake and storage mediated by the vesicular monoamine transporters VMAT1 and VMAT2. Monoamine uptake of vesicular preparations from embryonic brains of CAPS1 deletion mutants is decreased as compared with corresponding preparations from wild type littermates, and anti-CAPS1 or anti-CAPS2 antibodies inhibit monoamine sequestration by synaptic vesicles from adult mouse brain. In addition, overexpression of CAPS1 or CAPS2 enhances vesicular monoamine uptake in Chinese hamster ovary cells that stably express VMAT1 or VMAT2. CAPS function has been linked to the heterotrimeric GTPase G(o), which modulates vesicular monoamine uptake. We found that the expression of CAPS1 is decreased in brain membrane preparations from mice lacking G(o2)alpha, which may explain the reduced monoamine uptake by G(o2)alpha-deficient synaptic vesicles. Accordingly, anti-CAPS1 antibodies do not further reduce monoamine uptake by G(o2)alpha-deficient synaptic vesicles, whereas antibodies directed against CAPS2, whose expression is not altered in G(o2)alpha-deficient brain, still reduce monoamine uptake into G(o2)alpha-deficient vesicles. We conclude that CAPS proteins are involved in optimizing vesicular monoamine uptake and storage mediated by VMAT1 and VMAT2.
Collapse
Affiliation(s)
- Irene Brunk
- AG Functional Cell Biology, Institute for Integrative Neuroanatomy, Charité Center 2 for Basic Medicine, Philippstr. 12, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
7
|
Brunk I, Blex C, Sanchis-Segura C, Sternberg J, Perreau-Lenz S, Bilbao A, Hörtnagl H, Baron J, Juranek J, Laube G, Birnbaumer L, Spanagel R, Ahnert-Hilger G. Deletion of Go2alpha abolishes cocaine-induced behavioral sensitization by disturbing the striatal dopamine system. FASEB J 2008; 22:3736-46. [PMID: 18606864 DOI: 10.1096/fj.08-111245] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The alpha-subunits of the trimeric Go class of GTPases, comprising the splice variants Go1alpha and Go2alpha, are abundantly expressed in brain and reside on both plasma membrane and synaptic vesicles. Go2alpha is involved in the vesicular storage of monoamines but its physiological relevance is still obscure. We now show that genetic depletion of Go2alpha reduces motor activity induced by dopamine-enhancing drugs like cocaine, as repeated injections of cocaine fail to provoke behavioral sensitization in Go2alpha(-/-) mice. In Go2alpha(-/-) mice, D1 receptor signaling in the striatum is attenuated due to a reduced expression of Golf alpha and Gs alpha. Following cocaine treatment, Go2alpha(-/-) mice have lower D1 and higher D2 receptor amounts compared to wild-type mice. The lack of behavioral sensitization correlates with reduced dopamine levels in the striatum and decreased expression of tyrosine hydroxylase. One reason for the neurochemical changes may be a reduced uptake of monoamines by synaptic vesicles from Go2alpha(-/-) mice as a consequence of a lowered set point for filling. We conclude that Go2alpha optimizes vesicular filling which is instrumental for normal dopamine functioning and for the development of drug-induced behavioral sensitization.
Collapse
Affiliation(s)
- Irene Brunk
- Institute for Integrative Neuroanatomy, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fei H, Grygoruk A, Brooks ES, Chen A, Krantz DE. Trafficking of vesicular neurotransmitter transporters. Traffic 2008; 9:1425-36. [PMID: 18507811 DOI: 10.1111/j.1600-0854.2008.00771.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.
Collapse
Affiliation(s)
- Hao Fei
- Departments of Psychiatry and Neurobiology, Gonda Goldschmied Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1761, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Changes in the response to release of a single synaptic vesicle have generally been attributed to postsynaptic modification of receptor sensitivity, but considerable evidence now demonstrates that alterations in vesicle filling also contribute to changes in quantal size. Receptors are not saturated at many synapses, and changes in the amount of transmitter per vesicle contribute to the physiological regulation of release. On the other hand, the presynaptic factors that determine quantal size remain poorly understood. Aside from regulation of the fusion pore, these mechanisms fall into two general categories: those that affect the accumulation of transmitter inside a vesicle and those that affect vesicle size. This review will summarize current understanding of the neurotransmitter cycle and indicate basic, unanswered questions about the presynaptic regulation of quantal size.
Collapse
Affiliation(s)
- Robert H Edwards
- Department of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
10
|
Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A. VMAT2 gene expression and function as it applies to imaging beta-cell mass. J Mol Med (Berl) 2007; 86:5-16. [PMID: 17665159 DOI: 10.1007/s00109-007-0242-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/06/2007] [Accepted: 06/27/2007] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia. The two main forms of the disease are distinguished by different pathogenesis, natural histories, and population distributions and indicated as either type 1 (T1DM) or type 2 diabetes mellitus (T2DM). It is well established that T1DM is an autoimmune disease whereby beta-cells of pancreatic islets are destroyed leading to loss of endogenous insulin production. Albeit less dramatic, beta-cell mass (BCM) also drops in T2DM. Therefore, it is realistic to expect that noninvasive measures of BCM might provide useful information in the diabetes-care field. Preclinical studies have demonstrated that BCM measurements by positron emission tomography scanning, using the vesicular monoamine transporter type 2 (VMAT2) as a tissue-specific surrogate marker of insulin production and [11C] Dihydrotetrabenazine (DTBZ) as the radioligand specific for this molecule, is feasible in animal models. Unfortunately, the mechanisms underlying beta-cell-specific expression of VMAT2 are still largely unexplored, and a much better understanding of the regulation of VMAT2 gene expression and of its function in beta-cells will be required before the full utility of this technique in the prediction and treatment of individuals with diabetes can be understood. In this review, we summarize much of what is understood about the regulation of VMAT2 and identify questions whose answers may help in understanding what measurements of VMAT2 density mean in the context of diabetes.
Collapse
Affiliation(s)
- Paul E Harris
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Brunk I, Blex C, Rachakonda S, Höltje M, Winter S, Pahner I, Walther DJ, Ahnert-Hilger G. The first luminal domain of vesicular monoamine transporters mediates G-protein-dependent regulation of transmitter uptake. J Biol Chem 2006; 281:33373-85. [PMID: 16926160 DOI: 10.1074/jbc.m603204200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of vesicular monoamine transporters (VMATs) is down-regulated by the G-protein alpha-subunits of G(o2) and G(q), but the signaling pathways are not known. We show here that no such regulation is observed when VMAT1 or VMAT2 are expressed in Chinese hamster ovary (CHO) cells. However, when the intracellular compartments of VMAT-expressing CHO cells are preloaded with different monoamines, transport becomes susceptible to G-protein-dependent regulation, with differences between the two transporter isoforms. Epinephrine induces G-protein-mediated inhibition of transmitter uptake in CHOVMAT1 cells but prevents inhibition induced by dopamine in CHOVMAT2 cells. Epinephrine also antagonizes G-protein-mediated inhibition of monoamine uptake by VMAT2 expressing platelets or synaptic vesicles. In CHOVMAT2 cells G-protein-mediated inhibition of monoamine uptake can be induced by 5-hydroxytryptamine (serotonin) 1B receptor agonists, whereas alpha1 receptor agonists modulate uptake into CHOVMAT1 cells. Accordingly, 5-hydroxytryptamine 1B receptor antagonists prevent G-protein-mediated inhibition of uptake in partially filled platelets and synaptic vesicles expressing VMAT2. CHO cells expressing VMAT mutants with a shortened first vesicular loop transport monoamines. However, no or a reduced G-protein regulation of uptake can be initiated. In conclusion, vesicular content is involved in the activation of vesicle associated G-proteins via a structure sensing the luminal monoamine content. The first luminal loop of VMATs may represent a G-protein-coupled receptor that adapts vesicular filling.
Collapse
Affiliation(s)
- Irene Brunk
- Functional Cell Biology, Centre for Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|