1
|
Salazar-Hamm PS, Hathaway JJM, Winter AS, Caimi NA, Buecher DC, Valdez EW, Northup DE. Great diversity of KS α sequences from bat-associated microbiota suggests novel sources of uncharacterized natural products. FEMS MICROBES 2022; 3:xtac012. [PMID: 35573391 PMCID: PMC9097503 DOI: 10.1093/femsmc/xtac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Polyketide synthases (PKSs) are multidomain enzymes in microorganisms that synthesize complex, bioactive molecules. PKS II systems are iterative, containing only a single representative of each domain: ketosynthase alpha (KS[Formula: see text]), ketosynthase beta and the acyl carrier protein. Any gene encoding for one of these domains is representative of an entire PKS II biosynthetic gene cluster (BGC). Bat skin surfaces represent an extreme environment prolific in Actinobacteria that may constitute a source for bioactive molecule discovery. KS[Formula: see text] sequences were obtained from culturable bacteria from bats in the southwestern United States. From 467 bat bacterial isolates, we detected 215 (46%) had KS[Formula: see text] sequences. Sequencing yielded 210 operational taxonomic units, and phylogenetic placement found 45 (21%) shared <85% homology to characterized metabolites. Additionally, 16 Actinobacteria genomes from the bat microbiome were analyzed for biosynthetic capacity. A range of 69-93% of the BGCs were novel suggesting the bat microbiome may contain valuable uncharacterized natural products. Documenting and characterizing these are important in understanding the susceptibility of bats to emerging infectious diseases, such as white-nose syndrome. Also noteworthy was the relationship between KS [Formula: see text] homology and total BGC novelty within each fully sequenced strain. We propose amplification and detection of KS[Formula: see text] could predict a strain's global biosynthetic capacity.
Collapse
Affiliation(s)
- Paris S Salazar-Hamm
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | - Ara S Winter
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Nicole A Caimi
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | - Ernest W Valdez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
- U.S. Geological Survey, Fort Collins Science Center, Department of Biology, MSC03 2020, University of New Mexico, lbuquerque, NM 87131, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
2
|
Qian Z, Bruhn T, D’Agostino PM, Herrmann A, Haslbeck M, Antal N, Fiedler HP, Brack-Werner R, Gulder TAM. Discovery of the Streptoketides by Direct Cloning and Rapid Heterologous Expression of a Cryptic PKS II Gene Cluster from Streptomyces sp. Tü 6314. J Org Chem 2019; 85:664-673. [DOI: 10.1021/acs.joc.9b02741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhengyi Qian
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Torsten Bruhn
- Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10789 Berlin, Germany
| | - Paul M. D’Agostino
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01602 Dresden, Germany
| | - Alexander Herrmann
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Virology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Noémi Antal
- Institute of Microbiology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Hans-Peter Fiedler
- Institute of Microbiology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Ruth Brack-Werner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Virology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Tobias A. M. Gulder
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01602 Dresden, Germany
| |
Collapse
|
3
|
Mo J, Ye J, Chen H, Hou B, Wu H, Zhang H. Cloning and identification of the Frigocyclinone biosynthetic gene cluster from Streptomyces griseus strain NTK 97. Biosci Biotechnol Biochem 2019; 83:2082-2089. [PMID: 31303144 DOI: 10.1080/09168451.2019.1638755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Frigocyclinone is a novel antibiotic with antibacterial and anticancer activities. It is produced by both Antarctica-derived Streptomyces griseus NTK 97 and marine sponge-associated Streptomyces sp. M7_15. Here, we first report the biosynthetic gene cluster of frigocyclinone in the S. griseus NTK 97. The frigocyclinone gene cluster spans a DNA region of 33-kb which consists of 30 open reading frames (ORFs), encoding minimal type II polyketide synthase, aromatase and cyclase, redox tailoring enzymes, sugar biosynthesis-related enzymes, C-glycosyltransferase, a resistance protein, and three regulatory proteins. Based on the bioinformatic analysis, a biosynthetic pathway for frigocyclinone was proposed. Second, to verify the cloned gene cluster, CRISPR-Cpf1 mediated gene disruption was conducted. Mutant with the disruption of beta-ketoacyl synthase encoding gene frig20 fully loses the ability of producing frigocyclinone, while inactivating the glycosyltransferase gene frig1 leads to the production of key intermediate of anti-MRSA anthraquinone tetrangomycin.
Collapse
Affiliation(s)
- Jian Mo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Haozhe Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| |
Collapse
|
4
|
Cummings M, Peters AD, Whitehead GFS, Menon BRK, Micklefield J, Webb SJ, Takano E. Assembling a plug-and-play production line for combinatorial biosynthesis of aromatic polyketides in Escherichia coli. PLoS Biol 2019; 17:e3000347. [PMID: 31318855 PMCID: PMC6638757 DOI: 10.1371/journal.pbio.3000347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
Polyketides are a class of specialised metabolites synthesised by both eukaryotes and prokaryotes. These chemically and structurally diverse molecules are heavily used in the clinic and include frontline antimicrobial and anticancer drugs such as erythromycin and doxorubicin. To replenish the clinicians' diminishing arsenal of bioactive molecules, a promising strategy aims at transferring polyketide biosynthetic pathways from their native producers into the biotechnologically desirable host Escherichia coli. This approach has been successful for type I modular polyketide synthases (PKSs); however, despite more than 3 decades of research, the large and important group of type II PKSs has until now been elusive in E. coli. Here, we report on a versatile polyketide biosynthesis pipeline, based on identification of E. coli-compatible type II PKSs. We successfully express 5 ketosynthase (KS) and chain length factor (CLF) pairs-e.g., from Photorhabdus luminescens TT01, Streptomyces resistomycificus, Streptoccocus sp. GMD2S, Pseudoalteromonas luteoviolacea, and Ktedonobacter racemifer-as soluble heterodimeric recombinant proteins in E. coli for the first time. We define the anthraquinone minimal PKS components and utilise this biosynthetic system to synthesise anthraquinones, dianthrones, and benzoisochromanequinones (BIQs). Furthermore, we demonstrate the tolerance and promiscuity of the anthraquinone heterologous biosynthetic pathway in E. coli to act as genetically applicable plug-and-play scaffold, showing it to function successfully when combined with enzymes from phylogenetically distant species, endophytic fungi and plants, which resulted in 2 new-to-nature compounds, neomedicamycin and neochaetomycin. This work enables plug-and-play combinatorial biosynthesis of aromatic polyketides using bacterial type II PKSs in E. coli, providing full access to its many advantages in terms of easy and fast genetic manipulation, accessibility for high-throughput robotics, and convenient biotechnological scale-up. Using the synthetic and systems biology toolbox, this plug-and-play biosynthetic platform can serve as an engine for the production of new and diversified bioactive polyketides in an automated, rapid, and versatile fashion.
Collapse
Affiliation(s)
- Matthew Cummings
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Anna D. Peters
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - George F. S. Whitehead
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Binuraj R. K. Menon
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
- Warwick Integrative Synthetic Biology Centre, WISB, School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Jason Micklefield
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Simon J. Webb
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Huang C, Yang C, Zhu Y, Zhang W, Yuan C, Zhang C. Marine Bacterial Aromatic Polyketides From Host-Dependent Heterologous Expression and Fungal Mode of Cyclization. Front Chem 2018; 6:528. [PMID: 30425983 PMCID: PMC6218434 DOI: 10.3389/fchem.2018.00528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022] Open
Abstract
The structure diversity of type II polyketide synthases-derived bacterial aromatic polyketides is often enhanced by enzyme controlled or spontaneous cyclizations. Here we report the discovery of bacterial aromatic polyketides generated from 5 different cyclization modes and pathway crosstalk between the host and the heterologous fluostatin biosynthetic gene cluster derived from a marine bacterium. The discovery of new compound SEK43F (2) represents an unusual carbon skeleton resulting from a pathway crosstalk, in which a pyrrole-like moiety derived from the host Streptomyces albus J1074 is fused to an aromatic polyketide SEK43 generated from the heterologous fluostatin type II PKSs. The occurrence of a new congener, fluoquinone (3), highlights a bacterial aromatic polyketide that is exceptionally derived from a characteristic fungal F-mode first-ring cyclization. This study expands our knowledge on the power of bacterial type II PKSs in diversifying aromatic polyketides.
Collapse
Affiliation(s)
- Chunshuai Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, RNAM Center for Marine Microbiology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunfang Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, RNAM Center for Marine Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, RNAM Center for Marine Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Wenjun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, RNAM Center for Marine Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Chengshan Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, RNAM Center for Marine Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, RNAM Center for Marine Microbiology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Affiliation(s)
- Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry; Rheinische Friedrich Wilhelms University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
7
|
Hydroxyl regioisomerization of anthracycline catalyzed by a four-enzyme cascade. Proc Natl Acad Sci U S A 2017; 114:1554-1559. [PMID: 28137838 DOI: 10.1073/pnas.1610097114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ranking among the most effective anticancer drugs, anthracyclines represent an important family of aromatic polyketides generated by type II polyketide synthases (PKSs). After formation of polyketide cores, the post-PKS tailoring modifications endow the scaffold with various structural diversities and biological activities. Here we demonstrate an unprecedented four-enzyme-participated hydroxyl regioisomerization process involved in the biosynthesis of kosinostatin. First, KstA15 and KstA16 function together to catalyze a cryptic hydroxylation of the 4-hydroxyl-anthraquinone core, yielding a 1,4-dihydroxyl product, which undergoes a chemically challenging asymmetric reduction-dearomatization subsequently acted by KstA11; then, KstA10 catalyzes a region-specific reduction concomitant with dehydration to afford the 1-hydroxyl anthraquinone. Remarkably, the shunt product identifications of both hydroxylation and reduction-dehydration reactions, the crystal structure of KstA11 with bound substrate and cofactor, and isotope incorporation experiments reveal mechanistic insights into the redox dearomatization and rearomatization steps. These findings provide a distinguished tailoring paradigm for type II PKS engineering.
Collapse
|
8
|
Huang Y, Tang GL, Pan G, Chang CY, Shen B. Characterization of the Ketosynthase and Acyl Carrier Protein Domains at the LnmI Nonribosomal Peptide Synthetase-Polyketide Synthase Interface for Leinamycin Biosynthesis. Org Lett 2016; 18:4288-91. [PMID: 27541042 PMCID: PMC5013926 DOI: 10.1021/acs.orglett.6b02033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leinamycin (LNM) is biosynthesized by a hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Characterization of LnmI revealed ketosynthase (KS)-acyl carrier protein (ACP)-KS domains at the NRPS-PKS interface. Inactivation of the KS domain or ACP domain in vivo abolished LNM production, and the ACP domain can be phosphopantetheinylated in vitro. The LnmI KS-ACP-KS architecture represents a new mechanism for functional crosstalk between NRPS and AT-less type I PKS in the biosynthesis of hybrid peptide-polyketide natural products.
Collapse
Affiliation(s)
- Yong Huang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Gong-Li Tang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin , Madison, Wisconsin 53705, United States
| | | | | | - Ben Shen
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin , Madison, Wisconsin 53705, United States
| |
Collapse
|
9
|
Shen Y, Li X, Chai T, Wang H. Outer-sphere residues influence the catalytic activity of a chalcone synthase from Polygonum cuspidatum. FEBS Open Bio 2016; 6:610-8. [PMID: 27419064 PMCID: PMC4887977 DOI: 10.1002/2211-5463.12072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 11/27/2022] Open
Abstract
We have previously cloned a chalcone synthase (PcCHS1) from Polygonum cuspidatum and biochemically identified its enzymatic dynamic properties. Here, we found that the outer sphere residues, Q82 and R105, could affect the catalytic activity and product profile of PcCHS1. Both Q82P and R105Q mutations of PcCHS1 could also change the pH dependence activity as well as the product profile of PcCHS1. Moreover, the Q82P/C198F double mutant could rescue the complete loss of enzyme activity caused by the C198F single mutation. Our study demonstrated that these outer‐sphere residues of PcCHS1 play important roles both in structural maintenance and enzyme activity.
Collapse
Affiliation(s)
- Yalin Shen
- University of Chinese Academy of Sciences Beijing China
| | - Xing Li
- University of Chinese Academy of Sciences Beijing China; State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - Tuanyao Chai
- University of Chinese Academy of Sciences Beijing China
| | - Hong Wang
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
10
|
Sucipto H, Sahner JH, Prusov E, Wenzel SC, Hartmann RW, Koehnke J, Müller R. In vitro reconstitution of α-pyrone ring formation in myxopyronin biosynthesis. Chem Sci 2015; 6:5076-5085. [PMID: 29308173 PMCID: PMC5724707 DOI: 10.1039/c5sc01013f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Myxopyronins are α-pyrone antibiotics produced by the terrestrial bacterium Myxococcus fulvus Mx f50 and possess antibacterial activity against Gram-positive and Gram-negative pathogens. They target the bacterial RNA polymerase (RNAP) "switch region" as non-competitive inhibitors and display no cross-resistance to the established RNAP inhibitor rifampicin. Recent analysis of the myxopyronin biosynthetic pathway led to the hypothesis that this secondary metabolite is produced from two separate polyketide parts, which are condensed by the stand-alone ketosynthase MxnB. Using in vitro assays we show that MxnB catalyzes a unique condensation reaction forming the α-pyrone ring of myxopyronins from two activated acyl chains in form of their β-keto intermediates. MxnB is able to accept thioester substrates coupled to either N-acetylcysteamine (NAC) or a specific carrier protein (CP). The turnover rate of MxnB for substrates bound to CP was 12-fold higher than for NAC substrates, demonstrating the importance of protein-protein interactions in polyketide synthase (PKS) systems. The crystal structure of MxnB reveals the enzyme to be an unusual member of the ketosynthase group capable of binding and condensing two long alkyl chains bound to carrier proteins. The geometry of the two binding tunnels supports the biochemical data and allows us to propose an order of reaction, which is supported by the identification of novel myxopyronin congeners in the extract of the producer strain. Insights into the mechanism of this unique condensation reaction do not only expand our knowledge regarding the thiolase enzyme family but also opens up opportunities for PKS bioengineering to achieve directed structural modifications.
Collapse
Affiliation(s)
- H Sucipto
- Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 3 , 66123 Saarbrücken , Germany .
| | - J H Sahner
- Department of Drug Design and Optimization , Helmholtz Institute for Pharmaceutical Research Saarland , Pharmaceutical and Medicinal Chemistry , Saarland University , Building C2 3 , 66123 Saarbrücken , Germany
| | - E Prusov
- Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - S C Wenzel
- Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 3 , 66123 Saarbrücken , Germany .
| | - R W Hartmann
- Department of Drug Design and Optimization , Helmholtz Institute for Pharmaceutical Research Saarland , Pharmaceutical and Medicinal Chemistry , Saarland University , Building C2 3 , 66123 Saarbrücken , Germany
| | - J Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 2 , 66123 Saarbrücken , Germany .
| | - R Müller
- Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 3 , 66123 Saarbrücken , Germany .
| |
Collapse
|
11
|
Giuliano MW, Miller SJ. Site-Selective Reactions with Peptide-Based Catalysts. SITE-SELECTIVE CATALYSIS 2015; 372:157-201. [DOI: 10.1007/128_2015_653] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Petříčková K, Pospíšil S, Kuzma M, Tylová T, Jágr M, Tomek P, Chroňáková A, Brabcová E, Anděra L, Krištůfek V, Petříček M. Biosynthesis of colabomycin E, a new manumycin-family metabolite, involves an unusual chain-length factor. Chembiochem 2014; 15:1334-45. [PMID: 24838618 DOI: 10.1002/cbic.201400068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Indexed: 11/11/2022]
Abstract
Colabomycin E is a new member of the manumycin-type metabolites produced by the strain Streptomyces aureus SOK1/5-04 and identified by genetic screening from a library of streptomycete strains. The structures of colabomycin E and accompanying congeners were resolved. The entire biosynthetic gene cluster was cloned and expressed in Streptomyces lividans. Bioinformatic analysis and mutagenic studies identified components of the biosynthetic pathway that are involved in the formation of both polyketide chains. Recombinant polyketide synthases (PKSs) assembled from the components of colabomycin E and asukamycin biosynthetic routes catalyzing the biosynthesis of "lower" carbon chains were constructed and expressed in S. aureus SOK1/5-04 ΔcolC11-14 deletion mutant. Analysis of the metabolites produced by recombinant strains provided evidence that in both biosynthetic pathways the length of the lower carbon chain is controlled by an unusual chain-length factor supporting biosynthesis either of a triketide in asukamycin or of a tetraketide in colabomycin E. Biological activity assays indicated that colabomycin E significantly inhibited IL-1β release from THP-1 cells and might thus potentially act as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Kateřina Petříčková
- Institute of Microbiology AS CR, v.v.i. Vídeňská 1083, 142 00 Prague 4 (Czech Republic)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang Q, Pang B, Ding W, Liu W. Aromatic Polyketides Produced by Bacterial Iterative Type I Polyketide Synthases. ACS Catal 2013. [DOI: 10.1021/cs400211x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Zhang
- State Key
Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bo Pang
- State Key
Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wei Ding
- State Key
Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key
Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Kulcitki V. Biomimetic Strategies in Organic Synthesis. Terpenes. CHEMISTRY JOURNAL OF MOLDOVA 2012. [DOI: 10.19261/cjm.2012.07(2).14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The current paper represents an outline of the selected contributions to the biomimetic procedures and approaches for the synthesis of terpenes with complex structure and diverse functionalisation pattern. These include homologation strategies, cyclisations, rearrangements, as well as biomimetic remote functionalisations.
Collapse
|
15
|
Niu C, Cai M, Zhang Y, Zhou X. Biosynthetic origin of the carbon skeleton of a novel anti-tumor compound, haloroquinone, from a marine-derived fungus, Halorosellinia sp. Biotechnol Lett 2012; 34:2119-24. [PMID: 22829290 DOI: 10.1007/s10529-012-1019-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/09/2012] [Indexed: 11/25/2022]
Abstract
PURPOSE OF WORK The biosynthetic pathway of a new antitumor compound, haloroquinone, is elucidated to facilitate metabolic regulation for product accumulation and modification to produce new bioactive structural analogues of the compound. The biosynthetic origin of a novel promising protein kinase B inhibitor and anti-tumor compound, haloroquinone, from a marine-derived fungus, Halorosellinia sp. was clarified. The origin of carbon skeleton of haloroquinone was elucidated by feeding experiments with [2-(13)C]malonate and [1,2,3-(13)C(3)]malonate followed by (13)C-NMR analysis of the isolated compounds: 15 carbon atoms were derived from malonate, of which eight were from the methylene group and seven from the carboxyl group. The remaining one is probably obtained by O-methylation. Haloroquinone is thus synthesized via a polyketide pathway using malonyl-CoA as both the starter unit and the extender unit.
Collapse
Affiliation(s)
- Chuanpeng Niu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | | | | | | |
Collapse
|
16
|
Lin S, Huang T, Shen B. Tailoring Enzymes Acting on Carrier Protein-Tethered Substrates in Natural Product Biosynthesis. Methods Enzymol 2012; 516:321-43. [DOI: 10.1016/b978-0-12-394291-3.00008-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
17
|
Baharum H, Morita H, Tomitsuka A, Lee FC, Ng KY, Rahim RA, Abe I, Ho CL. Molecular cloning, modeling, and site-directed mutagenesis of type III polyketide synthase from Sargassum binderi (Phaeophyta). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:845-56. [PMID: 21181422 DOI: 10.1007/s10126-010-9344-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 10/24/2010] [Indexed: 05/30/2023]
Abstract
Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C(6)-C(14)) to produce tri- and tetraketide pyrones. Mutations at H(331) and N(364) caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His(227) and Leu(366) play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.
Collapse
Affiliation(s)
- Hariyanti Baharum
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites. Proc Natl Acad Sci U S A 2011; 108:12629-34. [PMID: 21768346 DOI: 10.1073/pnas.1103921108] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.
Collapse
|
19
|
|
20
|
Du L, Li D, Zhang G, Zhu T, Ai J, Gu Q. Novel carbon-bridged citrinin dimers from a volcano ash-derived fungus Penicillium citrinum and their cytotoxic and cell cycle arrest activities. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Ding W, Lei C, He Q, Zhang Q, Bi Y, Liu W. Insights into Bacterial 6-Methylsalicylic Acid Synthase and Its Engineering to Orsellinic Acid Synthase for Spirotetronate Generation. ACTA ACUST UNITED AC 2010; 17:495-503. [DOI: 10.1016/j.chembiol.2010.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
22
|
Das A, Khosla C. In vivo and in vitro analysis of the hedamycin polyketide synthase. ACTA ACUST UNITED AC 2010; 16:1197-207. [PMID: 19942143 DOI: 10.1016/j.chembiol.2009.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/19/2009] [Accepted: 11/02/2009] [Indexed: 11/25/2022]
Abstract
Hedamycin is an antitumor polyketide antibiotic with unusual biosynthetic features. Earlier sequence analysis of the hedamycin biosynthetic gene cluster implied a role for type I and type II polyketide synthases (PKSs). We demonstrate that the hedamycin minimal PKS can synthesize a dodecaketide backbone. The ketosynthase (KS) subunit of this PKS has specificity for both type I and type II acyl carrier proteins (ACPs) with which it collaborates during chain initiation and chain elongation, respectively. The KS receives a C(6) primer unit from the terminal ACP domain of HedU (a type I PKS protein) directly and subsequently interacts with the ACP domain of HedE (a type II PKS protein) during the process of chain elongation. HedE is a bifunctional protein with both ACP and aromatase activity. Its aromatase domain can modulate the chain length specificity of the minimal PKS. Chain length can also be influenced by HedA, the C-9 ketoreductase. While co-expression of the hedamycin minimal PKS and a chain-initiation module from the R1128 PKS yields an isobutyryl-primed decaketide, the orthologous PKS subunits from the hedamycin gene cluster itself are unable to prime the minimal PKS with a nonacetyl starter unit. Our findings provide new insights into the mechanism of chain initiation and elongation by type II PKSs.
Collapse
Affiliation(s)
- Abhirup Das
- Department of Chemistry, Stanford University, CA 94305-5025, USA
| | | |
Collapse
|
23
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Abstract
This review covers the recent literature on the release mechanisms for polyketides and nonribosomal peptides produced by microorganisms. The emphasis is on the novel enzymology and mechanistic insights revealed by the biosynthetic studies of new natural products.
Collapse
Affiliation(s)
- Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, NE 68588, USA.
| | | |
Collapse
|
25
|
King RW, Bauer JD, Brady SF. An environmental DNA-derived type II polyketide biosynthetic pathway encodes the biosynthesis of the pentacyclic polyketide erdacin. Angew Chem Int Ed Engl 2009; 48:6257-61. [PMID: 19621341 DOI: 10.1002/anie.200901209] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryan W King
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
26
|
Sun X, Zhou X, Cai M, Tao K, Zhang Y. Identified biosynthetic pathway of aspergiolide A and a novel strategy to increase its production in a marine-derived fungus Aspergillus glaucus by feeding of biosynthetic precursors and inhibitors simultaneously. BIORESOURCE TECHNOLOGY 2009; 100:4244-4251. [PMID: 19386490 DOI: 10.1016/j.biortech.2009.03.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/21/2009] [Accepted: 03/23/2009] [Indexed: 05/27/2023]
Abstract
Aspergiolide A is a novel anti-tumor anthraquinone derivant produced by marine-derived fungus Aspergillus glaucus. To identify its biosynthetic pathway and further improve the production, the effects of biosynthetic pathway specific inhibitors and precursors were investigated. Cerulenin and iodoacetamide, the specific inhibitors of polyketide pathway, could completely inhibit the aspergiolide A accumulation. Putative precursors of polyketide pathway could increase aspergiolide A production greatly, such as 6 mM acetate increased production by 135%. Simvastatin and citrate, the inhibitors of mevalonate pathway, stimulated the production by 63% and 179%, respectively. Considering that acetyl-CoA is the common starter unit in both polyketide and mevalonate pathway, a novel strategy was designed to stimulate the aspergiolide A accumulation. Combinations of 12 mM acetate with 0.3 mM simvastatin could increase the production by 151%, while the supplementation with 12 mM acetate and 12 mM citrate brought a 262% increase of aspergiolide A production. The strategy might be very useful to enhance the production of other secondary metabolites derived from polyketide pathway.
Collapse
Affiliation(s)
- Xueqian Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | |
Collapse
|
27
|
King R, Bauer J, Brady S. An Environmental DNA-Derived Type II Polyketide Biosynthetic Pathway Encodes the Biosynthesis of the Pentacyclic Polyketide Erdacin. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
|
29
|
|
30
|
Abstract
Natural products, produced chiefly by microorganisms and plants, can be large and structurally complex molecules. These molecules are manufactured by cellular assembly lines, in which enzymes construct the molecules in a stepwise fashion. The means by which enzymes interact and work together in a modular fashion to create diverse structural features has been an active area of research; the work has provided insight into the fine details of biosynthesis. A number of polycyclic aromatic natural products--including several noteworthy anticancer, antibacterial, antifungal, antiviral, antiparasitic, and other medicinally significant substances--are synthesized by polyketide synthases (PKSs) in soil-borne bacteria called actinomycetes. Concerted biosynthetic, enzymological, and structural biological investigations into these modular enzyme systems have yielded interesting mechanistic insights. A core module called the minimal PKS is responsible for synthesizing a highly reactive, protein-bound poly-beta-ketothioester chain. In the absence of other enzymes, the minimal PKS also catalyzes chain initiation and release, yielding an assortment of polycyclic aromatic compounds. In the presence of an initiation PKS module, polyketide backbones bearing additional alkyl, alkenyl, or aryl primer units are synthesized, whereas a range of auxiliary PKS enzymes and tailoring enzymes convert the product of the minimal PKS into the final natural product. In this Account, we summarize the knowledge that has been gained regarding this family of PKSs through recent investigations into the biosynthetic pathways of two natural products, actinorhodin and R1128 (A-D). We also discuss the practical relevance of these fundamental insights for the engineered biosynthesis of new polycyclic aromatic compounds. With a deeper understanding of the biosynthetic process in hand, we can assert control at various stages of molecular construction and thus introduce unnatural functional groups in the process. The metabolic engineer affords a number of new avenues for creating novel molecular structures that will likely have properties akin to their fully natural cousins.
Collapse
Affiliation(s)
| | - Chaitan Khosla
- Department of Chemistry
- Department of Chemical Engineering
- Department of Biochemistry, Stanford University, Stanford, California 94305-5025
| |
Collapse
|
31
|
Daum M, Peintner I, Linnenbrink A, Frerich A, Weber M, Paululat T, Bechthold A. Organisation of the Biosynthetic Gene Cluster and Tailoring Enzymes in the Biosynthesis of the Tetracyclic Quinone Glycoside Antibiotic Polyketomycin. Chembiochem 2009; 10:1073-83. [DOI: 10.1002/cbic.200800823] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Tao K, Du L, Sun X, Cai M, Zhu T, Zhou X, Gu Q, Zhang Y. Biosynthesis of aspergiolide A, a novel antitumor compound by a marine-derived fungus Aspergillus glaucus via the polyketide pathway. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2008.12.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Xu Z, Metsä-Ketelä M, Hertweck C. Ketosynthase III as a gateway to engineering the biosynthesis of antitumoral benastatin derivatives. J Biotechnol 2009; 140:107-13. [DOI: 10.1016/j.jbiotec.2008.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/08/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
34
|
Schmitt I, Lumbsch HT. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One 2009; 4:e4437. [PMID: 19212443 PMCID: PMC2636887 DOI: 10.1371/journal.pone.0004437] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 12/16/2008] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive. METHODOLOGY/PRINCIPAL FINDINGS We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA)-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication. CONCLUSIONS/SIGNIFICANCE Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.
Collapse
Affiliation(s)
- Imke Schmitt
- Department of Plant Biology and Bell Museum of Natural History, University of Minnesota, St Paul, MN, USA.
| | | |
Collapse
|
35
|
A quantum mechanics study on the reaction mechanism of chalcone formation from p-coumaroyl-CoA and malonyl-CoA catalyzed by chalcone synthase. Theor Chem Acc 2008. [DOI: 10.1007/s00214-008-0495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Du L, Zhu T, Liu H, Fang Y, Zhu W, Gu Q. Cytotoxic polyketides from a marine-derived fungus Aspergillus glaucus. JOURNAL OF NATURAL PRODUCTS 2008; 71:1837-1842. [PMID: 18986198 DOI: 10.1021/np800303t] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Eight new aromatic polyketides (2, 4-6, 8, 14, 16, and 17) together with eight known analogues (3, 7, 9-13, and 15) were isolated from the marine-derived fungus Aspergillus glaucus. The structures and stereochemistry of the new compounds were elucidated by spectroscopic and chemical methods, and their cytotoxicities were evaluated against the HL-60 and A-549 cell lines.
Collapse
Affiliation(s)
- Lin Du
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Huang X, He J, Niu X, Menzel KD, Dahse HM, Grabley S, Fiedler HP, Sattler I, Hertweck C. Benzopyrenomycin, a cytotoxic bacterial polyketide metabolite with a benzo[a]pyrene-type carbocyclic ring system. Angew Chem Int Ed Engl 2008; 47:3995-8. [PMID: 18412200 DOI: 10.1002/anie.200800083] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xueshi Huang
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhao Q, He Q, Ding W, Tang M, Kang Q, Yu Y, Deng W, Zhang Q, Fang J, Tang G, Liu W. Characterization of the Azinomycin B Biosynthetic Gene Cluster Revealing a Different Iterative Type I Polyketide Synthase for Naphthoate Biosynthesis. ACTA ACUST UNITED AC 2008; 15:693-705. [DOI: 10.1016/j.chembiol.2008.05.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/20/2008] [Accepted: 05/27/2008] [Indexed: 02/07/2023]
|
39
|
Fritzsche K, Ishida K, Hertweck C. Orchestration of Discoid Polyketide Cyclization in the Resistomycin Pathway. J Am Chem Soc 2008; 130:8307-16. [DOI: 10.1021/ja800251m] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kathrin Fritzsche
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Department of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany and the Friedrich-Schiller University, Jena, Germany
| | - Keishi Ishida
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Department of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany and the Friedrich-Schiller University, Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Department of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany and the Friedrich-Schiller University, Jena, Germany
| |
Collapse
|
40
|
Huang X, He J, Niu X, Menzel KD, Dahse HM, Grabley S, Fiedler HP, Sattler I, Hertweck C. Benzopyrenomycin, a Cytotoxic Bacterial Polyketide Metabolite with a Benzo[a]pyrene-Type Carbocyclic Ring System. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Schenk A, Xu Z, Pfeiffer C, Steinbeck C, Hertweck C. Geminal bismethylation prevents polyketide oxidation and dimerization in the benastatin pathway. Angew Chem Int Ed Engl 2008; 46:7035-8. [PMID: 17691088 DOI: 10.1002/anie.200702033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Angéla Schenk
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|
42
|
Purifying selection is a prevailing motif in the evolution of ketoacyl synthase domains of polyketide synthases from lichenized fungi. ACTA ACUST UNITED AC 2008; 112:277-88. [DOI: 10.1016/j.mycres.2007.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 07/12/2007] [Accepted: 08/29/2007] [Indexed: 11/20/2022]
|
43
|
Du L, Zhu X, Gerber R, Huffman J, Lou L, Jorgenson J, Yu F, Zaleta-Rivera K, Wang Q. Biosynthesis of sphinganine-analog mycotoxins. J Ind Microbiol Biotechnol 2008; 35:455-64. [PMID: 18214562 DOI: 10.1007/s10295-008-0316-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
Abstract
Sphinganine-analog mycotoxins (SAMT) are polyketide-derived natural products produced by a number of plant pathogenic fungi and are among the most economically important mycotoxins. The toxins are structurally similar to sphinganine, a key intermediate in the biosynthesis of ceramides and sphingolipids, and competitive inhibitors for ceramide synthase. The inhibition of ceramide and sphingolipid biosynthesis is associated with several fatal diseases in domestic animals and esophageal cancer and neural tube defects in humans. SAMT contains a highly reduced, acyclic polyketide carbon backbone, which is assembled by a single module polyketide synthase. The biosynthesis of SAMT involves a unique polyketide chain-releasing mechanism, in which a pyridoxal 5'-phosphate-dependent enzyme catalyzes the termination, offloading and elongation of the polyketide chain. This leads to the introduction of a new carbon-carbon bond and an amino group to the polyketide chain. The mechanism is fundamentally different from the thioesterase/cyclase-catalyzed polyketide chain releasing found in bacterial and other fungal polyketide biosynthesis. Genetic data suggest that the ketosynthase domain of the polyketide synthase and the chain-releasing enzyme are important for controlling the final product structure. In addition, several post-polyketide modifications have to take place before SAMT become mature toxins.
Collapse
Affiliation(s)
- L Du
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sattely ES, Fischbach MA, Walsh CT. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat Prod Rep 2008; 25:757-93. [DOI: 10.1039/b801747f] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Isolation of New Polyketide Synthase Gene Fragments and a Partial Gene Cluster from East China Sea and Function Analysis of a New Acyltransfrase. Appl Biochem Biotechnol 2007; 149:67-78. [DOI: 10.1007/s12010-007-8053-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
|
46
|
Schenk A, Xu Z, Pfeiffer C, Steinbeck C, Hertweck C. Geminal Bismethylation Prevents Polyketide Oxidation and Dimerization in the Benastatin Pathway. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 2007; 24:162-90. [PMID: 17268612 DOI: 10.1039/b507395m] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers advances in understanding of the biosynthesis of polyketides produced by type II PKS systems at the genetic, biochemical and structural levels.
Collapse
Affiliation(s)
- Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | |
Collapse
|
48
|
Characterization of the Substrate Specificity of PhlD, a Type III Polyketide Synthase from Pseudomonas fluorescens. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84117-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
49
|
Huang Y, Wendt-Pienkowski E, Shen B. A Dedicated Phosphopantetheinyl Transferase for the Fredericamycin Polyketide Synthase from Streptomyces griseus. J Biol Chem 2006; 281:29660-8. [PMID: 16895912 DOI: 10.1074/jbc.m604895200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyketide synthases cannot be functional unless their apo-acyl carrier proteins (apo-ACPs) are post-translationally modified by covalent attachment of the 4'-phosphopantetheine group to the highly conserved serine residue, and this reaction is catalyzed by phosphopantetheinyl transferases (PPTases). Cloning and sequence analysis of the 33-kb fredericamycin (FDM) biosynthetic gene cluster from Streptomyces griseus revealed fdmW, whose deduced gene product showed significant sequence homology to known PPTases. Biochemical characterization of FdmW in vitro confirmed that it is a PPTase. Inactivation of fdmW resulted in approximately 93% reduction of FDM production, and complementation of the fdmW::aac (3)IV mutant by expressing fdmW in trans restored FDM production to a level comparable with that of the wild-type strain. Although FdmW can phosphopantetheinylate various ACPs, it prefers its cognate substrate, the FdmH ACP, with a K(m) of 5.8 microM and a k(cat)/K(m) of 8.1 microM(-1) x min(-1), to heterologous ACPs, such as the TcmM ACP with a K(m) of 1.0 x 10(2) microM and a k(cat) /K(m) of 0.6 microM(-1) x min(-1). These findings suggest that FdmW is specific for FDM biosynthesis. FdmW therefore represents the first holo-ACP synthase-type PPTase identified from an aromatic polyketide biosynthetic gene cluster.
Collapse
Affiliation(s)
- Yong Huang
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
50
|
Takemura I, Imura K, Matsumoto T, Suzuki K. Convergence in [2+2+2] synthesis of β-phenylnaphthalene motif in polyaromatic natural products. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.06.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|