1
|
Cellular Model of Malignant Transformation of Primary Human Astrocytes Induced by Deadhesion/Readhesion Cycles. Int J Mol Sci 2022; 23:ijms23094471. [PMID: 35562862 PMCID: PMC9103552 DOI: 10.3390/ijms23094471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 01/07/2023] Open
Abstract
Astrocytoma is the most common and aggressive tumor of the central nervous system. Genetic and environmental factors, bacterial infection, and several other factors are known to be involved in gliomagenesis, although the complete underlying molecular mechanism is not fully understood. Tumorigenesis is a multistep process involving initiation, promotion, and progression. We present a human model of malignant astrocyte transformation established by subjecting primary astrocytes from healthy adults to four sequential cycles of forced anchorage impediment (deadhesion). After limiting dilution of the surviving cells obtained after the fourth deadhesion/readhesion cycle, three clones were randomly selected, and exhibited malignant characteristics, including increased proliferation rate and capacity for colony formation, migration, and anchorage-independent growth in soft agar. Functional assay results for these clonal cells, including response to temozolomide, were comparable to U87MG—a human glioblastoma-derived cell lineage—reinforcing malignant cell transformation. RNA-Seq analysis by next-generation sequencing of the transformed clones relative to the primary astrocytes revealed upregulation of genes involved in the PI3K/AKT and Wnt/β-catenin signaling pathways, in addition to upregulation of genes related to epithelial–mesenchymal transition, and downregulation of genes related to aerobic respiration. These findings, at a molecular level, corroborate the change in cell behavior towards mesenchymal-like cell dedifferentiation. This linear progressive model of malignant human astrocyte transformation is unique in that neither genetic manipulation nor treatment with carcinogens are used, representing a promising tool for testing combined therapeutic strategies for glioblastoma patients, and furthering knowledge of astrocytoma transformation and progression.
Collapse
|
2
|
Yaneva Z, Ivanova D. Catechins within the Biopolymer Matrix-Design Concepts and Bioactivity Prospects. Antioxidants (Basel) 2020; 9:E1180. [PMID: 33256098 PMCID: PMC7761086 DOI: 10.3390/antiox9121180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies and clinical investigations proposed that catechins extracts alone may not provide a sufficient level of bioactivities and promising therapeutic effects to achieve health benefits due to a number of constraints related to poor oral absorption, limited bioavailability, sensitivity to oxidation, etc. Modern scientific studies have reported numerous techniques for the design of micro- and nano-bio-delivery systems as novel and promising strategies to overcome these obstacles and to enhance catechins' therapeutic activity. The objective assessment of their benefits, however, requires a critical comparative estimation of the advantages and disadvantages of the designed catechins-biocarrier systems, their biological activities and safety administration aspects. In this respect, the present review objectively outlines, compares and assesses the recent advances related to newly developed design concepts of catechins' encapsulation into various biopolymer carriers and their release behaviour, with a special emphasis on the specific physiological biofunctionalities of the innovative bioflavonoid/biopolymer delivery systems.
Collapse
Affiliation(s)
- Zvezdelina Yaneva
- Chemistry Unit, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria;
| | | |
Collapse
|
3
|
Lakshminarayana S, Augustine D, Rao RS, Patil S, Awan KH, Venkatesiah SS, Haragannavar VC, Nambiar S, Prasad K. Molecular pathways of oral cancer that predict prognosis and survival: A systematic review. J Carcinog 2018; 17:7. [PMID: 30766450 PMCID: PMC6334533 DOI: 10.4103/jcar.jcar_17_18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Several genes and pathways associated with oral squamous cell carcinoma (OSCC) are significant in terms of early detection and prognosis. The objective of this literature review is to evaluate the current research on molecular pathways and genes involved in oral cancer. Articles on the genes involved in oral cancer pathways were evaluated to identify potential biomarkers that can predict survival. In total, 36 articles were retrieved from internet databases, including EBSCO Host, Google Scholar, PubMed, and Science Direct, using the keywords "biomarker of oral cancer," "pathways of oral cancer," "genes involved in oral cancer," and "oral cancer pathways." A total of 36 studies related to OSCC were chosen. Most of the studies used cell lines, while others used archival tissues, few studies followed up the cases. Three major interlinked pathways found were the nuclear factor kappa B (NF-kB), PI3K-AKT, and Wnt pathways. The commonly mutated genes were cyclin D1 (CCND1), Rb, p53, FLJ10540, and TC21. The NF-kB, PI3K-AKT, and Wnt pathways are most frequently involved in the molecular pathogenesis of oral cancer. However, the CCND1, Rb, p53, FLJ10540, and TC21 genes were found to be more accurate in determining patients' overall survival. Polymerase chain reaction, immunohistochemistry, and immunoblotting were the commonly used detection methods.
Collapse
Affiliation(s)
- Surendra Lakshminarayana
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Dominic Augustine
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Roopa S Rao
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA
| | - Sowmya Samudrala Venkatesiah
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Vanishri C Haragannavar
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Shwetha Nambiar
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Kavitha Prasad
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
OSR1 is a novel epigenetic silenced tumor suppressor regulating invasion and proliferation in renal cell carcinoma. Oncotarget 2018; 8:30008-30018. [PMID: 28404905 PMCID: PMC5444721 DOI: 10.18632/oncotarget.15611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most malignant tumors in human. Here, we found that odd-skipped related transcription factor 1 (OSR1) was downregulated in 769-P and 786-O cells due to promoter CpG methylation. OSR1 expression could be restored by pharmacological demethylation treatment in silenced cell lines. Knockdown of OSR1 in two normal expressed cell lines- A498 and ACHN promoted cell invasion and cellular proliferation. RNA-Sequencing analysis showed that expression profile of genes involved in multiple cancer-related pathways was changed when OSR1 was downregulated. By quantitative real-time PCR, we confirmed that depletion of OSR1 repressed the expression of several tumor suppresor genes involved in p53 pathway, such as p53, p21, p27, p57 and RB in A498 and ACHN. Moreover, knockdown of OSR1 suppressed the transcriptional activity of p53. Of note, OSR1 depletion also led to increased expression of a few oncogenic genes. We further evaluated the clinical significance of OSR1 in primary human RCC specimens by immunohistochemical staining and found that OSR1 expression was downregulated in primary RCC and negatively correlated with histological grade. Thus, our data indicate that OSR1 is a novel tumor suppressor gene in RCC. Downregulation of OSR1 might represent a potentially prognostic marker and therapeutic target for RCC.
Collapse
|
5
|
Ivanova D, Zhelev Z, Aoki I, Bakalova R, Higashi T. Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs. Chin J Cancer Res 2016; 28:383-96. [PMID: 27647966 PMCID: PMC5018533 DOI: 10.21147/j.issn.1000-9604.2016.04.01] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS-independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.
Collapse
Affiliation(s)
- Donika Ivanova
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria; Institute of Biophysics & Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Medical Faculty, Sofia University, Sofia 1407, Bulgaria
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Maurya AK, Vinayak M. Modulation of PKC signaling and induction of apoptosis through suppression of reactive oxygen species and tumor necrosis factor receptor 1 (TNFR1): key role of quercetin in cancer prevention. Tumour Biol 2015; 36:8913-24. [DOI: 10.1007/s13277-015-3634-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023] Open
|
7
|
Shen C, Wang X, Tian L, Zhou Y, Chen D, Du H, Wang W, Liu L, Che G. "Different trend" in multiple primary lung cancer and intrapulmonary metastasis. Eur J Med Res 2015; 20:17. [PMID: 25889108 PMCID: PMC4339418 DOI: 10.1186/s40001-015-0109-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/27/2015] [Indexed: 02/05/2023] Open
Abstract
Background The distinguishing of intrapulmonary metastatic tumors from multiple primary lung cancers is difficult but of great importance for the therapeutic management and prognosis of these patients. Methods We used genomic DNA analyzed by six microsatellites (D7S1824, D15S822, D2S1363, D10S1239, D6S1056, and D22S689) with PCR to identify discordant allelic variation from 12 patients. There are five patients with multiple primary lung cancers and seven patients who were diagnosed with intrapulmonary metastases from 850 patients with primary lung cancer in our hospital. The experiments were approved by the West China Hospital Ethics committee (No. 2013 (33)) and all patients agreed to participate in the study and signed an informed consent form. Results In the group of metachronous lung tumor, three of five patients have different histological types and one of five patients have the same histological type which showed “contradictory trend”. The other one showed “unique trend”. In the second group (intrapulmonary metastasis lung tumor), one patient showed “contradictory trend” and the others showed “unique trend”. Conclusions “Different trends” are useful in discrimination of intrapulmonary metastasis lung cancer and multiple primary lung cancer even diagnosed with the histopathological evaluation.
Collapse
Affiliation(s)
- Cheng Shen
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xin Wang
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Long Tian
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yubin Zhou
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dali Chen
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Heng Du
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Weiya Wang
- Department of Pathology, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lunxu Liu
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guowei Che
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Zubor P, Hatok J, Moricova P, Kajo K, Kapustova I, Mendelova A, Racay P, Danko J. Gene expression abnormalities in histologically normal breast epithelium from patients with luminal type of breast cancer. Mol Biol Rep 2014; 42:977-88. [PMID: 25407308 DOI: 10.1007/s11033-014-3834-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/10/2014] [Indexed: 12/14/2022]
Abstract
The gene expression profile of breast cancer has been described as a great breakthrough on the way to comprehend differences in cancer origin, behavior and therapy. However, gene expression profile in histologically normal epithelium (HNEpi) which could harbor genetic abnormalities predisposing breast tissue to develop malignancy was minor scope for scientists in the past. Thus, we aimed to analyze gene expressions in HNEpi and breast cancer tissue (BCTis) in order to establish its value as potential diagnostic marker for cancer development. We evaluated a panel of disease-specific genes in luminal type (A/B) of breast cancer and tumor surrounding HNEpi by qRT-PCR Array in 32 microdissected samples. There was 20.2 and 2.4% deregulation rate in genes with at least 2-fold or 5-fold over-expression between luminal (A/B) type breast carcinomas and tumor surrounding HNEpi, respectively. The high-grade luminal carcinomas showed higher number of deregulated genes compared to low-grade cases (50.6 vs. 23.8% with at least 2-fold deregulation rate). The main overexpressed genes in HNEpi were KLK5, SCGB1D2, GSN, EGFR and NGFR. The significant differences in gene expression between BCTis and HNEpi samples were revealed for BAG1, C3, CCNA2, CD44, FGF1, FOSL1, ID2, IL6R, NGFB, NGFR, PAPPA, PLAU, SERPINB5, THBS1 and TP53 gene (p < 0.05) and BCL2L2, CTSB, ITGB4, JUN, KIT, KLF5, SCGB1D2, SCGB2A1, SERPINE1 (p < 0.01), and EGFR, GABRP, GSN, MAP2K7 and THBS2 (p < 0.001), and GSN, KLK5 (p < 0.0001). The ontological gene analyses revealed high deregulations in gene group directly associated with breast cancer prognosis and origin.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2 Martin, 036 01, Bratislava, Slovak Republic, Slovakia,
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shen C, Xu H, Liu L, Zhou Y, Chen D, Du H, Han Z, Che G. "Unique trend" and "contradictory trend" in discrimination of primary synchronous lung cancer and metastatic lung cancer. BMC Cancer 2013; 13:467. [PMID: 24106770 PMCID: PMC3852048 DOI: 10.1186/1471-2407-13-467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 10/01/2013] [Indexed: 02/05/2023] Open
Abstract
Background Distinguishing between multiple primary lung cancers and metastatic tumors is often difficult when the tumor histology is same. Since genomic instability is a common feature of cancer, we hypothesized that independently arising neoplasms in an individual patient would exhibit measurable genomic variation, enabling discrimination of tumor lineage and relatedness. The feasibility of analyzing genomic instability expression profiles to distinguish multiple primary lung cancers from metastatic tumors was evaluated. Methods This study enrolled 13 patients, with multiple primary lung cancers demonstrating with the histology, who underwent surgery between April 2003 and December 2012 at the Department of the Thoracic Surgery at West China Hospital in Sichuan province of China and 10 patients who were diagnosed as metastasis disease during the same period for comparison purposes. Genomic DNA from lung cancers from individual patients was analyzed by six microsatellites (D2S1363, D6S1056, D7S1824, D10S1239, D15S822, and D22S689) with PCR to identify discordant allelic variation. The experiments were approved by the West China Hospital Ethics committee (No.2013 (33)) and all patients agreed to participate in the study and signed an informed consent form. Results All of the 10 patients with distant metastasis showed a consistent consequence that we called “unique trend” between primary tumor and distant metastasis. The “trend” is representive in this study, which means that all alleles corresponding to six microsatellite markers were detected in DNA from primary tumors but were reduced or not observed in DNA from metastatic tumors. In the group of synchronous lung tumor with different histological types, the result showed a “contradictory trend”. Some alleles were detected in DNA from primary tumors but were reduced or not observed in DNA from metastatic tumors and other alleles corresponding to six microsatellite markers were detected in DNA from metastatic tumors but were reduced or not observed in DNA from primary tumors. In the third group (synchronous lung tumor with same histological types), 2 of 8 patients showed “unique trend” and the others showed “contradictory trend”. Conclusions With polymorphic microsatellite markers, the “unique trend” that represents metastasis cancers and the “contradictory trend” that represents primary multiple tumors are useful in the diagnosis between tumors found at the same time in the pulmonary even diagnosed with the histopathological evaluation from a single patient.
Collapse
Affiliation(s)
- Cheng Shen
- Department of Cardiovascular and Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Suleiman L, Négrier C, Boukerche H. Protein S: A multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit Rev Oncol Hematol 2013; 88:637-54. [PMID: 23958677 DOI: 10.1016/j.critrevonc.2013.07.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/18/2013] [Accepted: 07/17/2013] [Indexed: 01/09/2023] Open
Abstract
Since its discovery in 1970, protein S (PS) has emerged as a key vitamin K-dependent natural anticoagulant protein at the crossroads of multiple biological processes, including coagulation, apoptosis, atherosclerosis, angiogenesis/vasculogenesis, and cancer progression. Following the binding to a unique family of protein tyrosine kinase receptors referred to as Tyro-3, Axl and Mer (TAM) receptors, PS can lead to regulation of coagulation, phagocytosis of apoptotic cells, cell survival, activation of innate immunity, vessel integrity and angiogenesis, and local invasion and metastasis. Because of these dynamics and multiple functions of PS, which are largely lost following invalidation of the mouse PROS1 gene, this molecule is currently intensively studied in biomedical research. The purpose of this review is to provide a brief chronicle of the discovery and current understanding of the mechanisms of PS signaling, and how PS and their signaling partners regulate various cellular functions, with a particular focus on TAM receptors.
Collapse
Affiliation(s)
- Lutfi Suleiman
- University Claude Bernard, Lyon I, INSERM, Department of Onco-Haematology, EA 4174, France
| | | | | |
Collapse
|
11
|
High risk of benzo[α]pyrene-induced lung cancer in E160D FEN1 mutant mice. Mutat Res 2011; 731:85-91. [PMID: 22155171 DOI: 10.1016/j.mrfmmm.2011.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/18/2011] [Accepted: 11/25/2011] [Indexed: 11/20/2022]
Abstract
Flap endonuclease 1 (FEN1), a member of the Rad2 nuclease family, possesses 5' flap endonuclease (FEN), 5' exonuclease (EXO), and gap-endonuclease (GEN) activities. The multiple, structure-specific nuclease activities of FEN1 allow it to process different intermediate DNA structures during DNA replication and repair. We previously identified a group of FEN1 mutations and single nucleotide polymorphisms that impair FEN1's EXO and GEN activities in human cancer patients. We also established a mouse model carrying the E160D FEN1 mutation, which mimics the mutations seen in humans. FEN1 mutant mice developed spontaneous lung cancer at high frequency at their late life stages. An important unanswered question is whether individuals carrying such FEN1 mutation are more susceptible to tobacco smoke and have an earlier onset of lung cancer. Here, we report our study on E160D mutant mice exposed to benzo[α]pyrene (B[α]P), a major DNA damaging compound found in tobacco smoke. We demonstrate that FEN1 employs its GEN activity to cleave DNA bubble substrates with BP-induced lesions, but the E160D FEN1 mutation abolishes such activity. As a consequence, Mouse cells carrying the E160D mutation display defects in the repair of B[α]P adducts and accumulate DNA double-stranded breaks and chromosomal aberrations upon treatments with B[α]P. Furthermore, more E160D mice than WT mice have an early onset of B[α]P-induced lung adenocarcinoma. All together, our current study suggests that individuals carrying the GEN-deficient FEN1 mutations have high risk to develop lung cancer upon exposure to B[α]P-containing agents such as tobacco smoke.
Collapse
|
12
|
Anthocyanin-rich Mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/p53 and c-jun. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.06.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Pogribny IP, Tryndyak VP, Boureiko A, Melnyk S, Bagnyukova TV, Montgomery B, Rusyn I. Mechanisms of peroxisome proliferator-induced DNA hypomethylation in rat liver. Mutat Res 2008; 644:17-23. [PMID: 18639561 DOI: 10.1016/j.mrfmmm.2008.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/11/2008] [Accepted: 06/19/2008] [Indexed: 01/05/2023]
Abstract
Genomic hypomethylation is a consistent finding in both human and animal tumors and mounting experimental evidence suggests a key role for epigenetic events in tumorigenesis. Furthermore, it has been suggested that early changes in DNA methylation and histone modifications may serve as sensitive predictive markers in animal testing for carcinogenic potency of environmental agents. Alterations in metabolism of methyl donors, disturbances in activity and/or expression of DNA methyltransferases, and presence of DNA single-strand breaks could contribute to the loss of cytosine methylation during carcinogenesis; however, the precise mechanisms of genomic hypomethylation induced by chemical carcinogens remain largely unknown. This study examined the mechanism of DNA hypomethylation during hepatocarcinogenesis induced by peroxisome proliferators WY-14,643 (4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid) and DEHP (di-(2-ethylhexyl)phthalate), agents acting through non-genotoxic mode of action. In the liver of male Fisher 344 rats exposed to WY-14,643 (0.1% (w/w), 5 months), the level of genomic hypomethylation increased by approximately 2-fold, as compared to age-matched controls, while in the DEHP group (1.2% (w/w), 5 months) DNA methylation did not change. Global DNA hypomethylation in livers from WY-14,643 group was accompanied by the accumulation of DNA single-strand breaks, increased cell proliferation, and diminished expression of DNA methyltransferase 1, while the metabolism of methyl donors was not affected. In contrast, none of these parameters changed significantly in rats fed DEHP. Since WY-14,643 is much more potent carcinogen than DEHP, we conclude that the extent of loss of DNA methylation may be related to the carcinogenic potential of the chemical agent, and that accumulation of DNA single-strand breaks coupled to the increase in cell proliferation and altered DNA methyltransferase expression may explain genomic hypomethylation during peroxisome proliferator-induced carcinogenesis.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Noel EE, Perry J, Chaplin T, Mao X, Cazier JB, Joel SP, Oliver RTD, Young BD, Lu YJ. Identification of genomic changes associated with cisplatin resistance in testicular germ cell tumor cell lines. Genes Chromosomes Cancer 2008; 47:604-13. [DOI: 10.1002/gcc.20564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Pogribny IP, Tryndyak VP, Woods CG, Witt SE, Rusyn I. Epigenetic effects of the continuous exposure to peroxisome proliferator WY-14,643 in mouse liver are dependent upon peroxisome proliferator activated receptor alpha. Mutat Res 2007; 625:62-71. [PMID: 17586532 PMCID: PMC2111058 DOI: 10.1016/j.mrfmmm.2007.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 01/17/2023]
Abstract
Peroxisome proliferators are potent rodent liver carcinogens that act via a non-genotoxic mechanism. The mode of action of these agents in rodent liver includes increased cell proliferation, decreased apoptosis, secondary oxidative stress and other events; however, it is not well understood how peroxisome proliferators are triggering the plethora of the molecular signals leading to cancer. Epigenetic changes have been implicated in the mechanism of liver carcinogenesis by a number of environmental agents. Short-term treatment with peroxisome proliferators and other non-genotoxic carcinogens leads to global and locus-specific DNA hypomethylation in mouse liver, events that were suggested to correlate with a burst of cell proliferation. In the current study, we investigated the effects of long-term exposure to a model peroxisome proliferator WY-14,643 on DNA and histone methylation. Male SV129mice were fed a control or WY-14,643-containing (1000ppm) diet for one week, five weeks or five months. Treatment with WY-14,643 led to progressive global hypomethylation of liver DNA as determined by an HpaII-based cytosine extension assay with the maximum effect reaching over 200% at five months. Likewise, trimethylation of histone H4 lysine 20 and H3 lysine 9 was significantly decreased at all time points. The majority of cytosine methylation in mammals resides in repetitive DNA sequences. In view of this, we measured the effect of WY-14,643 on the methylation status of major and minor satellites, as well as in IAP, LINE1 and LINE2 elements in liver DNA. Exposure to WY-14,643 resulted in a gradual loss of cytosine methylation in major and minor satellites, IAP, LINE1 and LINE2 elements. The epigenetic changes correlated with the temporal effects of WY-14,643 on cell proliferation rates in liver, but no sustained effect on c-Myc promoter methylation was observed. Finally, WY-14,643 had no effect on DNA and histone methylation status in Pparalpha-null mice at any of the time points considered in this study. These data indicate the importance of epigenetic alterations in the mechanism of action of peroxisome proliferators and the key role of Pparalpha.
Collapse
Affiliation(s)
- Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Volodymyr P. Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Courtney G. Woods
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah E. Witt
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|