1
|
Hernández-Franco P, Maldonado-Vega M, Calderón-Salinas JV, Rojas E, Valverde M. Role of Ape1 in Impaired DNA Repair Capacity in Battery Recycling Plant Workers Exposed to Lead. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7961. [PMID: 35805621 PMCID: PMC9265680 DOI: 10.3390/ijerph19137961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Exposure to lead in environmental and occupational settings continues to be a serious public health problem. At environmentally relevant doses, two mechanisms may underlie lead exposition-induced genotoxicity, disruption of the redox balance and an interference with DNA repair systems. The aim of the study was to evaluate the ability of lead exposition to induce impaired function of Ape1 and its impact on DNA repair capacity of workers chronically exposed to lead in a battery recycling plant. Our study included 53 participants, 37 lead exposed workers and 16 non-lead exposed workers. Lead intoxication was characterized by high blood lead concentration, high lipid peroxidation and low activity of delta-aminolevulinic acid dehydratase (δ-ALAD). Relevantly, we found a loss of DNA repair capacity related with down-regulation of a set of specific DNA repair genes, showing specifically, for the first time, the role of Ape1 down regulation at transcriptional and protein levels in workers exposed to lead. Additionally, using a functional assay we found an impaired function of Ape1 that correlates with high blood lead concentration and lipid peroxidation. Taken together, these data suggest that occupational exposure to lead could decrease DNA repair capacity, inhibiting the function of Ape1, as well other repair genes through the regulation of the ZF-transcription factor, promoting the genomic instability.
Collapse
Affiliation(s)
- Pablo Hernández-Franco
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - María Maldonado-Vega
- Hospital Regional de Alta Especialidad del Bajío, Dirección de Planeación, Enseñanza e Investigación, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico;
| | - José Víctor Calderón-Salinas
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN #2508, Colonia San Pedro Zacatenco, Mexico City 07480, Mexico;
| | - Emilio Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Mahara Valverde
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| |
Collapse
|
2
|
Theophanides T, Anastassopoulou J. The effects of metal ion contaminants on the double stranded DNA helix and diseases. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1030-1040. [PMID: 28758877 DOI: 10.1080/10934529.2017.1328950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mineral metal ions are essential for the maintenance of the reactions that regulate homeostasis and the functions of our body. It is known that the regulation of the neurodegenerative system depends directly on life metal ions, such as Na, K, Mg, Ca, Fe, Mo, Cu, Co, Zn, Cr, Mn, while the toxic metals Cd, Pb, Hg, etc disturb homeostasis, leading to diseases. Particularly significant is the effect of toxic metals on the double stranded forms of DNA and conformations. It was found that the toxic metal ions by reacting specifically with the nucleic bases and electrostatically with the negatively phosphate groups of the DNA backbone cause changes in the structure of the DNA double helix, leading to breaks of single or double strands. Accumulation of these defects affects the protecting systems of the body and induces mutations, eventually leading to serious diseases. There are many metal ions, such as Cr, Al, Cd, Cu, Ni, which by binding directly to DNA molecule or by developing oxidative stress increase the instability of DNA, promoting epigenetic changes that lead to DNA damage. Toxic metal ions induce indirect DNA damage and influence the gene stability by inactivating encoding proteins or by changing the redox potential and the signaling of metalloenzymes.
Collapse
Affiliation(s)
- T Theophanides
- a National Technical University of Athens, Chemical Engineering Department, Radiation Chemistry & Biospectroscopy , Zografou Campus, Zografou , Athens , Greece
| | - J Anastassopoulou
- b International Anticancer Research Institute , Kapandritiou-Kalamou Road, Kapandriti , Attiki , Greece
| |
Collapse
|
3
|
Sauni R, Oksa P, Uitti J, Linna A, Kerttula R, Pukkala E. Cancer incidence among Finnish male cobalt production workers in 1969-2013: a cohort study. BMC Cancer 2017; 17:340. [PMID: 28521771 PMCID: PMC5437691 DOI: 10.1186/s12885-017-3333-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/09/2017] [Indexed: 12/18/2022] Open
Abstract
Background There is inadequate evidence for the carcinogenicity of cobalt and cobalt compounds in humans. Consequently, the International Agency for Research on Cancer (IARC) has evaluated cobalt metal without tungsten carbide as possibly carcinogenic to humans (Group 2B). The aim of the study was to assess the risk of cancer among workers employed in a Finnish cobalt plant since the beginning of production in 1968. Methods The study cohort consisted of all males employed by the Finnish cobalt plant for at least a year during 1968–2004. The follow-up for cancer was performed by studying the files of the Finnish Cancer Registry, using personal identity codes as a key. The cohort was divided into subcohorts by exposure levels. Standardised incidence ratios (SIRs) and 95% confidence intervals (95% CIs) were calculated as ratios of the observed numbers of cancer cases and the numbers expected on the basis of incidence rates in the population of the same region. Results The follow-up cohort consisted of 995 men with 26,083 person-years. During the follow-up period, 92 cases of cancer were diagnosed (SIR 1.00, 95% CI 0.81–1.22), six of which were lung cancer cases (SIR 0.50; 95% CI 0.18–1.08). The only cancer type with increased incidence was tongue cancer (three cases, SIR 7.39; 95% CI 1.52–21.6). We observed no dose-response effect across the different exposure levels and the incidence of any cancer type. Conclusions The results suggest that occupational exposure to cobalt is not associated with an increased overall cancer risk or lung cancer risk among cobalt workers. Because of the small number of cancer cases the results must be interpreted with caution.
Collapse
Affiliation(s)
- Riitta Sauni
- Department for Occupational Safety and Health, Ministry of Social Affairs and Health, P.O. Box 33, FI-00023 Government, Tampere, Finland.
| | - Panu Oksa
- Clinic of Occupational Medicine, Tampere University Hospital, Tampere, Finland.,Finnish Institute of Occupational Health, Tampere, Finland
| | - Jukka Uitti
- Clinic of Occupational Medicine, Tampere University Hospital, Tampere, Finland.,Finnish Institute of Occupational Health, Tampere, Finland.,The Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Asko Linna
- Health Centre of Kokkola town, Kokkola, Finland
| | | | - Eero Pukkala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland.,Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| |
Collapse
|
4
|
Basu A, Sohn YS, Alyan M, Nechushtai R, Domb AJ, Goldblum A. Discovering Novel and Diverse Iron-Chelators in Silico. J Chem Inf Model 2016; 56:2476-2485. [PMID: 28024407 DOI: 10.1021/acs.jcim.6b00450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Specific iron chelation is a validated strategy in anticancer drug discovery. However, only a few chemical classes (4-5 categories) have been reported to date. We discovered in silico five new structurally diverse iron-chelators by screening through models based on previously known chelators. To encompass a larger chemical space and propose newer scaffolds, we used our iterative stochastic elimination (ISE) algorithm for model building and subsequent virtual screening (VS). The ISE models were developed by training a data set of 130 reported iron-chelators. The developed models are statistically significant with area under the receiver operating curve greater than 0.9. The models were used to screen the Enamine chemical database of ∼1.8 million molecules. The top ranked 650 molecules were reduced to 50 diverse structures, and a few others were eliminated due to the presence of reactive groups. Finally, 34 molecules were purchased and tested in vitro. Five compounds were identified with significant iron-chelation activity in Cal-G assay. Intracellular iron-chelation study revealed one compound as equivalent in potency to the iron chelating "gold standards" deferoxamine and deferiprone. The amount of discovered positives (5 out of 34) is expected by the realistic enrichment factor of the model.
Collapse
Affiliation(s)
- Arijit Basu
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| | - Yang-Sung Sohn
- Department of Plant and Environmental Sciences, the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem , Givat Ram, Jerusalem, 91904, Israel
| | - Mohamed Alyan
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| | - Rachel Nechushtai
- Department of Plant and Environmental Sciences, the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem , Givat Ram, Jerusalem, 91904, Israel
| | - Abraham J Domb
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| | - Amiram Goldblum
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| |
Collapse
|
5
|
Morales ME, Servant G, Ade C, Roy-Enge AM. Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage. Biol Trace Elem Res 2015; 166:24-33. [PMID: 25774044 PMCID: PMC4696754 DOI: 10.1007/s12011-015-0298-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 12/13/2022]
Abstract
Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past 2 decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease, and an overview of the current knowledge on how heavy metals influence TE-mediated damage.
Collapse
Affiliation(s)
- Maria E. Morales
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Geraldine Servant
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Catherine Ade
- Department of Cellular and Molecular Biology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Astrid M. Roy-Enge
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
- Corresponding author: Astrid M. Roy-Engel, Ph.D., Department of Epidemiology, Tulane Cancer Center, SL66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112. , Phone: (504) 988-6316, Fax: (504) 988-5516
| |
Collapse
|
6
|
Cooper KL, King BS, Sandoval MM, Liu KJ, Hudson LG. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc. Toxicol Appl Pharmacol 2013; 269:81-8. [PMID: 23523584 DOI: 10.1016/j.taap.2013.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 01/21/2023]
Abstract
Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations.
Collapse
Affiliation(s)
- Karen L Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
7
|
Taylor ML. Quantification of differences in the effective atomic numbers of healthy and cancerous tissues: A discussion in the context of diagnostics and dosimetry. Med Phys 2012; 39:5437-45. [DOI: 10.1118/1.4742849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Qin XJ, Liu W, Li YN, Sun X, Hai CX, Hudson LG, Liu KJ. Poly(ADP-ribose) polymerase-1 inhibition by arsenite promotes the survival of cells with unrepaired DNA lesions induced by UV exposure. Toxicol Sci 2012; 127:120-9. [PMID: 22387748 DOI: 10.1093/toxsci/kfs099] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human arsenic exposure is associated with increased risk of skin cancer, and arsenite greatly enhances ultraviolet (UV)-induced skin tumors in a mouse model of carcinogenesis. Inhibition of DNA repair is one proposed mechanism for the observed cocarcinogenicity. We have previously demonstrated that low concentrations of arsenite inhibit poly(ADP-ribose) polymerase (PARP)-1, thus interfering with DNA repair process triggered by UV radiation. Because overactivation of PARP-1 often leads to apoptotic cell death, and unrepaired DNA lesions promote genomic instability and carcinogenesis, we hypothesized that inhibition of PARP-1 by arsenic may promote the survival of potentially "initiated carcinogenic cells," i.e., cells with unrepaired DNA lesions. In the present study, we tested this hypothesis on UV-challenged HaCat cells. Cells were pretreated with 2μM arsenite for 24 h before UV exposure. Outcome parameters included apoptotic death rate, PARP-1 activation, apoptotic molecules, and retention of DNA lesions. UV exposure induced PARP-1 activation and associated poly(ADP-ribose) production, apoptosis-inducing factor release, cytochrome C release, and caspases activation, which led to apoptotic death in HaCat cells. Pretreatment with 2μM arsenite significantly inhibited UV-induced cell death as well as the associated molecular events. Notably, knockdown of PARP-1 with small interfering RNA completely abolished the antagonism of arsenite. Furthermore, arsenite pretreatment led to long-term retention of UV-induced cyclobutane pyrimidine dimers. Together, these results suggest that low concentration of arsenite reduces UV-induced apoptosis via inhibiting PARP-1, thus promoting the survival of cells with unrepaired DNA lesions, which may be an important mechanism underlying arsenic cocarcinogenic action.
Collapse
Affiliation(s)
- Xu-Jun Qin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Yu Y, Kalinowski DS, Kovacevic Z, Siafakas AR, Jansson PJ, Stefani C, Lovejoy DB, Sharpe PC, Bernhardt PV, Richardson DR. Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors. J Med Chem 2009; 52:5271-94. [PMID: 19601577 DOI: 10.1021/jm900552r] [Citation(s) in RCA: 306] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Yu
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Grygoryev D, Moskalenko O, Zimbrick JD. Non-linear effects in the formation of DNA damage in medaka fish fibroblast cells caused by combined action of cadmium and ionizing radiation. Dose Response 2007; 6:283-98. [PMID: 19020653 PMCID: PMC2564760 DOI: 10.2203/dose-response.07-012.grygoryev] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ionizing radiation-induced formation of genomic DNA damage can be modulated by nearby chemical species such as heavy metal ions, which can lead to non-linear dose response. To investigate this phenomenon, we studied cell survival and formation of 8-hydroxyguanine (8-OHG) base modifications and double strand breaks (DSB) caused by combined action of cadmium (Cd) and gamma radiation in cultured medaka fish (Oryzias latipes) fibroblast cells. Our data show that the introduction of Cd leads to a significant decrease in the fraction of surviving cells and to increased sensitivity of cells to ionizing radiation (IR). Cd also appears to cause non-linear increases in radiation-induced yields of 8-OHG and DSB as dose-yield plots of these lesions exhibit non-linear S-shaped curves with a sharp increase in the yields of lesions in the 10-20 microM range of Cd concentrations. The combined action of ionizing radiation and Cd leads to increased DNA damage formation compared to the effects of the individual stressors. These results are consistent with a hypothesis that the presence of Cd modulates the efficiency of DNA repair systems thus causing increases in radiation-induced DNA damage formation and decreases in cell survival.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Oleksandr Moskalenko
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - John D. Zimbrick
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| |
Collapse
|