1
|
Tran DB, To TH, Tran PD. Mo- and W-molecular catalysts for the H2 evolution, CO2 reduction and N2 fixation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Zhai DD, Xie SJ, Xia Y, Fang HY, Shi ZJ. Silylamido supported dinitrogen heterobimetallic complexes: syntheses and their catalytic ability. Natl Sci Rev 2020; 8:nwaa290. [PMID: 34987834 PMCID: PMC8694672 DOI: 10.1093/nsr/nwaa290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Molybdenum dinitrogen complexes supported by monodentate arylsilylamido ligand, [Ar(Me3Si)N]3MoN2Mg(THF)2[N(SiMe3)Ar] (5) and [Ar(Me3Si)N]3MoN2SiMe3 (6) (Ar = 3,5-Me2C6H3) were synthesized and structurally characterized, and proved to be effective catalysts for the disproportionation of cyclohexadienes and isomerization of terminal alkenes. The 1H NMR spectrum suggested that the bridging nitrogen ligand remains intact during the catalytic reaction, indicating possible catalytic ability of the Mo-N=N motif.
Collapse
Affiliation(s)
- Dan-Dan Zhai
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Si-Jun Xie
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yi Xia
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hua-Yi Fang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Margulieux GW, Kim S, Chirik PJ. Determination of the N-H Bond Dissociation Free Energy in a Pyridine(diimine)molybdenum Complex Prepared by Proton-Coupled Electron Transfer. Inorg Chem 2020; 59:15394-15401. [PMID: 33016073 DOI: 10.1021/acs.inorgchem.0c02382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pyridine(diimine)molybdenum bis(imido) complex (iPrPDI)Mo(═NTol)2 (Tol = 4-methylphenyl) was synthesized by the addition of 2 equiv of 4-methylphenylazide to the corresponding molybdenum benzene derivative, (iPrPDI)Mo(η6-C6H6) [iPrPDI = 2,6-(2,6-iPr2C6H3N═CMe)2C5H3N]. Protonation of (iPrPDI)Mo(═NTol)2 with 2,6-lutinidum triflate yielded a cationic molybdenum amido complex, [(iPrPDI)Mo(NHTol)(═NTol)][OTf], which was further transformed into the neutral molybdenum amido (iPrPDI)Mo(NHTol)(═NTol) by reduction with zinc powder. A series of spectroscopic, synthetic, and pKa determination studies along with electrochemical measurements by the protonation-reduction pathway were used to establish an N-H bond dissociation free energy (BDFE) between 65 and 69 kcal/mol for the molybdenum imido-amido compound, (iPrPDI)Mo(NHTol)(═NTol). Full-molecule density functional theory studies provided a computed value of 61 kcal/mol. By contrast, reduction of (iPrPDI)Mo(═NTol)2 with KC8 afforded the corresponding anionic molybdenum complex K[(iPrPDI)Mo(═NTol)2], which has a potassium cation intercalated with the pyridine and tolyl groups. Protonation of K[(iPrPDI)Mo(═NTol)2] with the weak amidinium acid [TBD(H)][BArF24] (TBD = triazabicyclodecene; BArF24 = B[3,5-(CF3)2C6H3]4) also produced the neutral molybdenum amido complex (iPrPDI)Mo(NHTol)(═NTol). Measurement of the pKa and oxidation potential of K[(iPrPDI)Mo(═NTol)2] provided a range of 69-73 kcal/mol for the N-H BDFE of (iPrPDI)Mo(NHTol)(═NTol), in good agreement with the protonation-reduction route and completing the square scheme. The similar pKa and redox potentials obtained from each pathway demonstrate that both sequences are energetically feasible for proton-coupled electron-transfer (PCET) events. This study on the determination of N-H BDFE of the molybdenum amido complex renders fundamental insight into the N2 reduction cycle by PCET.
Collapse
Affiliation(s)
- Grant W Margulieux
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sangmin Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Kim S, Zhong H, Park Y, Loose F, Chirik PJ. Catalytic Hydrogenation of a Manganese(V) Nitride to Ammonia. J Am Chem Soc 2020; 142:9518-9524. [PMID: 32339454 DOI: 10.1021/jacs.0c03346] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic hydrogenation of a metal nitride to produce free ammonia using a rhodium hydride catalyst that promotes H2 activation and hydrogen-atom transfer is described. The phenylimine-substituted rhodium complex (η5-C5Me5)Rh(MePhI)H (MePhI = N-methyl-1-phenylethan-1-imine) exhibited higher thermal stability compared to the previously reported (η5-C5Me5)Rh(ppy)H (ppy = 2-phenylpyridine). DFT calculations established that the two rhodium complexes have comparable Rh-H bond dissociation free energies of 51.8 kcal mol-1 for (η5-C5Me5)Rh(MePhI)H and 51.1 kcal mol-1 for (η5-C5Me5)Rh(ppy)H. In the presence of 10 mol% of the phenylimine rhodium precatalyst and 4 atm of H2 in THF, the manganese nitride (tBuSalen)Mn≡N underwent hydrogenation to liberate free ammonia with up to 6 total turnovers of NH3 or 18 turnovers of H• transfer. The phenylpyridine analogue proved inactive for ammonia synthesis under identical conditions owing to competing deleterious hydride transfer chemistry. Subsequent studies showed that the use of a non-polar solvent such as benzene suppressed formation of the cationic rhodium product resulting from the hydride transfer and enabled catalytic ammonia synthesis by proton-coupled electron transfer.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongyu Zhong
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Yoonsu Park
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Florian Loose
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Rupp S, Plasser F, Krewald V. Multi‐Tier Electronic Structure Analysis of Sita's Mo and W Complexes Capable of Thermal or Photochemical N
2
Splitting. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Severine Rupp
- Fachbereich Chemie Theoretische Chemie Technische Universität Darmstadt Alarich‐Weiss‐Str. 4 64287 Darmstadt Germany
| | - Felix Plasser
- Department of Chemistry Loughborough University Loughborough LE11 3TU United Kingdom
| | - Vera Krewald
- Fachbereich Chemie Theoretische Chemie Technische Universität Darmstadt Alarich‐Weiss‐Str. 4 64287 Darmstadt Germany
| |
Collapse
|
6
|
Sivasankar C, Madarasi PK, Tamizmani M. Activation and Functionalization of Dinitrogen in the Presence of Molecular Hydrogen Promoted by Transition Metal Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chinnappan Sivasankar
- Catalysis and Energy Laboratory Department of Chemistry Pondicherry University R. V. Nagar 605 014 Puducherry India
| | | | - Masilamani Tamizmani
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai P. R. China
| |
Collapse
|
7
|
Krewald V. Steric Switching From Photochemical to Thermal N 2 Splitting: A Computational Analysis of the Isomerization Reaction {(Cp *)(Am)Mo} 2(μ-η 1:η 1-N 2) → {(Cp *)(Am)Mo} 2(μ-N) 2. Front Chem 2019; 7:352. [PMID: 31165063 PMCID: PMC6535493 DOI: 10.3389/fchem.2019.00352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
A μ-η1:η1-N2-bridged Mo dimer, {(η5-C5Me5)[N(Et)C(Ph)N(Et)]Mo}2(μ-N2), cleaves dinitrogen thermally resulting in a crystallographically characterized bis-μ-N-bridged dimer, {(η5-C5Me5)[N(Et)C(Ph)N(Et)]Mo}2(μ-N)2. A structurally related Mo dimer with a bulkier amidinate ligand, ([N(iPr)C(Me)N(iPr)]), is only capable of photochemical dinitrogen activation. These opposing reactivities were rationalized as steric switching between the thermally and photochemically active species. A computational analysis of the geometric and electronic structures of intermediates along the isomerization pathway from Mo2(μ-η1:η1-N2) to Mo2(μ-η2:η1-N2) and Mo2(μ-η2:η2-N2), and finally Mo2(μ-N)2, is presented here. The extent to which dispersion affects the thermodynamics of the isomers is evaluated, and it is found that dispersion interactions play a significant role in stabilizing the product and making the reaction exergonic. The concept of steric switching is further explored with theoretical models with sterically even less demanding ligands, indicating that systematic ligand modifications could be used to rationally design the N2 activation energy landscape. An analysis of electronic excitations in the computed UV-vis spectra of the two complexes shows that a particular type of asymmetric excitations is only present in the photoactive complex.
Collapse
Affiliation(s)
- Vera Krewald
- Theoretische Chemie, Fachbereich Chemie, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
8
|
Simonneau A, Etienne M. Enhanced Activation of Coordinated Dinitrogen with p-Block Lewis Acids. Chemistry 2018; 24:12458-12463. [PMID: 29656447 DOI: 10.1002/chem.201800405] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/10/2018] [Indexed: 11/09/2022]
Abstract
This Concept article highlights recent research on Lewis acid adducts of dinitrogen complexes, including our contributions. After a reminder of the early works, it is demonstrated that such kind of species offers a new platform for dinitrogen functionalization as well as valuable models for the understanding of elementary steps of (bio)catalytic cycles. When possible, parallels regarding this mode of activation from the orbital point of view are drawn between the different systems discussed herein.
Collapse
Affiliation(s)
- Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France, 205, route de Narbonne, BP44099, F-31077, Toulouse Cedex 4, France
| | - Michel Etienne
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France, 205, route de Narbonne, BP44099, F-31077, Toulouse Cedex 4, France
| |
Collapse
|
9
|
Nishibayashi Y. Development of catalytic nitrogen fixation using transition metal-dinitrogen complexes under mild reaction conditions. Dalton Trans 2018; 47:11290-11297. [PMID: 30087974 DOI: 10.1039/c8dt02572j] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes our recent progress in catalytic nitrogen fixation using transition metal-dinitrogen complexes as catalysts. Our research group has recently developed novel reaction systems for the catalytic transformation of molecular dinitrogen into ammonia and hydrazine using molybdenum-, iron-, cobalt- and vanadium-dinitrogen complexes under mild reaction conditions. The new findings presented in this paper may provide a new approach to the development of economical nitrogen fixation to replace the energy-consuming Haber-Bosch process.
Collapse
Affiliation(s)
- Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Klopsch I, Schendzielorz F, Volkmann C, Würtele C, Schneider S. Synthesis of Benzonitrile from Dinitrogen. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Isabel Klopsch
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstr. 4 37077 Göttingen Germany
| | - Florian Schendzielorz
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstr. 4 37077 Göttingen Germany
| | - Christian Volkmann
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstr. 4 37077 Göttingen Germany
| | - Christian Würtele
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstr. 4 37077 Göttingen Germany
| | - Sven Schneider
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstr. 4 37077 Göttingen Germany
| |
Collapse
|
11
|
Abstract
New perspectives for dinitrogen activation: an overview of photochemical pathways to cleave the strong N–N bond.
Collapse
|