1
|
Mishra S, Ghosh A, Hansda B, Mondal TK, Biswas T, Das B, Roy D, Kumari P, Mondal S, Mandal B. Activation of Inert Supports for Enzyme(s) Immobilization Harnessing Biocatalytic Sustainability for Perennial Utilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18377-18406. [PMID: 39171729 DOI: 10.1021/acs.langmuir.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Although Nature's evolution and intelligence have gifted humankind with noteworthy enzyme candidates to simplify complex reactions with ultrafast, overselective, effortless, mild biological reactions for millions of years, their availability at minute-scale, short-range time-temperature stability, and purification costs hardly justify recycling/or reuse. Covalent immobilization, particularly via multipoint bonds, prevents denaturing, maintains activities for long-range time, pH, and temperature, and makes catalysts available for repetitive usages; which attracts researchers and industries to bring more immobilized enzyme contenders in science and commercial progressions. Inert-support activation, the most crucial step, needs appropriate activators; under mild conditions, the activator's functional group(s) still present on the activated support rapidly couples the enzyme, preventing unfolding and keeping the active site alive. This review summarizes exciting experimental advances, from the 1950s until today, in the activation strategies of various inert supports with five different surface activators, the cyanogen bromide, the isocyanate/isothiocyanate, the glutaraldehyde, the carbodiimide (with or without N-hydroxysuccinimide (NHS)), and the diazo group, for the immobilization of diverse enzymes for broader applications. These activators under mild pH (7.5 ± 0.5) and temperature (27 ± 3 °C) and ordinary stirring witnessed support activation and enzyme coupling and put off unfolding, harnessing addressable activities (CNBr: 40 ± 10%; -N═C═O/-N═C═S: 32 ± 7%; GA: 70 ± 15%; CDI: 60 ± 10%; -N+≡N: 80 ± 15%), while underprivileged stability, longevity, and reusabilities keep future investigations alive.
Collapse
Affiliation(s)
- Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal, India 700032
| | - Pallavi Kumari
- University Department of Chemistry, T.M.B.U., Bhagalpur, Bihar-812007, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| |
Collapse
|
2
|
Cunha ES, Hatem CL, Barrick D. Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: Determination of the roles of spacing, orientation, and enzyme identity. Proteins 2016; 84:1043-54. [PMID: 27071357 DOI: 10.1002/prot.25047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 03/09/2016] [Accepted: 03/25/2016] [Indexed: 12/22/2022]
Abstract
Biomass deconstruction to small simple sugars is a potential approach to biofuels production; however, the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large-scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high-yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyperstable α-helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N-terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. Proteins 2016; 84:1043-1054. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eva S Cunha
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218.,Department of Structural Biology, Max Plank Institute of Biophysics, Max-von-Laue-Str. 3, Frankfurt am Main, D-60438, Germany
| | - Christine L Hatem
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| |
Collapse
|
4
|
Mozhaev VV, Melik-nubarov NS, Šikšnis V, Martinek K. Strategy for Stabilizing Enzymes Part Two: Increasing Enzyme Stability by Selective Chemical Modification. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429008992061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- V. V. Mozhaev
- Chemistry Department, Moscow State University, SU-117 234, Moscow, USSR
| | | | - Virginius Šikšnis
- All-Union Research Institute of Applied Enzymology, SU-232 028, Vilnius, Lithuanian, SSR
| | - Karel Martinek
- Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, CS-166 10, Prague, Czechoslovakia
| |
Collapse
|
5
|
Pereira PA, Moreira NE, Malcata FX. The Effect of Substrate-Dependent Enzyme Deactivation on the Effectiveness Factor of a Slab-Shaped Bead. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 1996. [DOI: 10.1252/jcej.29.1035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pedro A. Pereira
- Escola Supenor de Biotecnologia, Universidade Católica Portuguesa
| | | | | |
Collapse
|
6
|
Plou FJ, Ballesteros A. Acylation of subtilisin with long fatty acyl residues affects its activity and thermostability in aqueous medium. FEBS Lett 1994; 339:200-4. [PMID: 8313974 DOI: 10.1016/0014-5793(94)80415-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Subtilisin Carlsberg has been artificially hydrophobized by acylation with octanoyl or palmitoyl chlorides. Samples with several degrees of substitution were obtained. Hydrophobization facilitates in some cases the binding of synthetic or natural substrates. Furthermore, derivatized subtilisins show improved thermal stability (15-fold at 45 degrees C) in aqueous solution. As a result, octanoyl-subtilisin exhibits enhanced thermostability without losing biological activity.
Collapse
Affiliation(s)
- F J Plou
- Departamento de Biocatalisis, Instituto de Catálisis, CSIC, Universidad Autónoma, Madrid, Spain
| | | |
Collapse
|
7
|
Popov VO, Ovchinnikov AN, Egorov AM, Berezin IV. NAD+-dependent hydrogenase from the hydrogen oxidizing bacterium Alcaligenes eutrophus Z1. Stabilization against temperature and urea induced inactivation. Biochimie 1986; 68:63-8. [PMID: 3089315 DOI: 10.1016/s0300-9084(86)81069-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemical modification of the NAD+-dependent hydrogenase from the hydrogen oxidizing bacterium Alcaligenes eutrophus Z1 results in considerable enzyme stabilization towards urea and temperature induced inactivation. The stabilizing effect was shown to originate from the suppression of hydrogenase tetramer dissociation. The magnitudes of the stabilizing effects (5-fold and more) were in agreement with the values predicted on the basis of the enzyme thermoinactivation mechanism postulated earlier. Hydrophobic interactions are considered to be critical for the stability of the enzyme quaternary structure. Various methods of hydrogenase immobilization were tested. The enzyme was immobilized with a high retention of activity on aminated silochrom via its carboxylic groups.
Collapse
|