1
|
Okkelman IA, McGarrigle R, O’Carroll S, Berrio DC, Schenke-Layland K, Hynes J, Dmitriev RI. Extracellular Ca2+-Sensing Fluorescent Protein Biosensor Based on a Collagen-Binding Domain. ACS APPLIED BIO MATERIALS 2020; 3:5310-5321. [DOI: 10.1021/acsabm.0c00649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irina A. Okkelman
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
| | - Ryan McGarrigle
- Agilent Technologies Ireland Limited, Little
Island T45 WK12, Cork, Ireland
| | - Shane O’Carroll
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
| | - Daniel Carvajal Berrio
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (iFIT), Eberhard Karls University Tübingen, Geschwister-Scholl-Platz, Tübingen 72074, Germany
| | - Katja Schenke-Layland
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (iFIT), Eberhard Karls University Tübingen, Geschwister-Scholl-Platz, Tübingen 72074, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles 90095, California, United States
| | - James Hynes
- Agilent Technologies Ireland Limited, Little
Island T45 WK12, Cork, Ireland
| | - Ruslan I. Dmitriev
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
- I.M. Sechenov First Moscow State University, Institute for Regenerative Medicine, Moscow 119992, Russian Federation
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging. Cold Spring Harb Protoc 2014; 2014:1328-32. [PMID: 25447281 DOI: 10.1101/pdb.prot077040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluorescence lifetime imaging (FLIM) is a powerful imaging mode that can be combined with confocal imaging. Changes in the fluorescence decay time of a donor in an intramolecular Förster resonance energy transfer (FRET)-based biosensor provide intrinsic quantitative data. Here, we describe a protocol using both the Ca(2+) sensor TN-XL, which uses troponin C, as the Ca(2+)-sensing unit, and the FLIM technology based on time-correlated single-photon counting.
Collapse
|