Vegas A. On the charge transfer between conventional cations: the structures of ternary oxides and chalcogenides of alkali metals.
ACTA CRYSTALLOGRAPHICA SECTION B: STRUCTURAL SCIENCE 2012;
68:364-77. [PMID:
22810906 DOI:
10.1107/s0108768112021234]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/10/2012] [Indexed: 11/10/2022]
Abstract
The structures of ternary oxides and chalcogenides of alkali metals are dissected in light of the extended Zintl-Klemm concept. This model, which has been successfully extended to other compounds different to the Zintl phases, assumes that crystal structures can be better understood if the cation substructures are contemplated as Zintl polyanions. This implies the occurrence of charge transfer between cations, even if they are of the same kind. In this article, the charge transfer between cations is even more illustrative because the two alkali atoms have different electronegativity, so that the less electropositive alkali metal and the O/S atom always form skeletons characteristic of the group 14 elements. Thus, partial structures of the zincblende-, wurtzite-, PbO- and SrAl(2)-type are found in the oxides/sulfides. In this work, such an interpretation of the structures remains at a topological level. The analysis also shows that this interpretation is complementary to the model developed by Andersson and Hyde which contemplates the structures as the intergrowth of structural slabs of more simple compounds.
Collapse