1
|
Duan W, Zhi H, Keefe DW, Gao B, LeFevre GH, Toor F. Sensitive and Specific Detection of Estrogens Featuring Doped Silicon Nanowire Arrays. ACS OMEGA 2022; 7:47341-47348. [PMID: 36570182 PMCID: PMC9774403 DOI: 10.1021/acsomega.1c00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Estrogens and estrogen-mimicking compounds in the aquatic environment are known to cause negative impacts to both ecosystems and human health. In this initial proof-of-principle study, we developed a novel vertically oriented silicon nanowire (vSiNW) array-based biosensor for low-cost, highly sensitive and selective detection of estrogens. The vSiNW arrays were formed using an inexpensive and scalable metal-assisted chemical etching (MACE) process. A vSiNW array-based p-n junction diode (vSiNW-diode) transducer design for the biosensor was used and functionalized via 3-aminopropyltriethoxysilane (APTES)-based silane chemistry to bond estrogen receptor-alpha (ER-α) to the surface of the vSiNWs. Following receptor conjugation, the biosensors were exposed to increasing concentrations of estradiol (E2), resulting in a well-calibrated sensor response (R 2 ≥ 0.84, 1-100 ng/mL concentration range). Fluorescence measurements quantified the distribution of estrogen receptors across the vSiNW array compared to planar Si, indicating an average of 7 times higher receptor presence on the vSiNW array surface. We tested the biosensor's target selectivity by comparing it to another estrogen (estrone [E1]) and an androgen (testosterone), where we measured a high positive electrical biosensor response after E1 exposure and a minimal response after testosterone. The regeneration capacity of the biosensor was tested following three successive rinses with phosphate buffer solution (PBS) between hormone exposure. Traditional horizontally oriented Si NW field effect transistor (hSiNW-FET)-based biosensors report electrical current changes at the nanoampere (nA) level that require bulky and expensive measurement equipment making them unsuitable for field measurements, whereas the reported vSiNW-diode biosensor exhibits current changes in the microampere (μA) range, demonstrating up to 100-fold electrical signal amplification, thus enabling sensor signal measurement using inexpensive electronics. The highly sensitive and specific vSiNW-diode biosensor developed here will enable the creation of low-cost, portable, field-deployable biosensors that can detect estrogenic compounds in waterways in real-time.
Collapse
Affiliation(s)
- Wenqi Duan
- Department
of Electrical and Computer Engineering, University of Iowa, 205 North Madison Street, Iowa City, Iowa 52242, United States
- Iowa
Technology Institute, University of Iowa, 330 South Madison Street, Iowa City, Iowa 52242, United States
| | - Hui Zhi
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United
States
- IIHR−Hydroscience
& Engineering, 100
C. Maxwell Stanley Hydraulics Laboratory, Iowa
City, Iowa 52242, United States
| | - Daniel W. Keefe
- Department
of Electrical and Computer Engineering, University of Iowa, 205 North Madison Street, Iowa City, Iowa 52242, United States
- Iowa
Technology Institute, University of Iowa, 330 South Madison Street, Iowa City, Iowa 52242, United States
| | - Bingtao Gao
- Department
of Electrical and Computer Engineering, University of Iowa, 205 North Madison Street, Iowa City, Iowa 52242, United States
- Iowa
Technology Institute, University of Iowa, 330 South Madison Street, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United
States
- IIHR−Hydroscience
& Engineering, 100
C. Maxwell Stanley Hydraulics Laboratory, Iowa
City, Iowa 52242, United States
| | - Fatima Toor
- Department
of Electrical and Computer Engineering, University of Iowa, 205 North Madison Street, Iowa City, Iowa 52242, United States
- Iowa
Technology Institute, University of Iowa, 330 South Madison Street, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Xu X, Yu Y, Hu Q, Chen S, Nyholm L, Zhang Z. Redox Buffering Effects in Potentiometric Detection of DNA Using Thiol-Modified Gold Electrodes. ACS Sens 2021; 6:2546-2552. [PMID: 34184534 PMCID: PMC8314270 DOI: 10.1021/acssensors.0c02700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Label-free potentiometric
detection of DNA molecules using a field-effect
transistor (FET) with a gold gate offers an electrical sensing platform
for rapid, straightforward, and inexpensive analyses of nucleic acid
samples. To induce DNA hybridization on the FET sensor surface to
enable potentiometric detection, probe DNA that is complementary to
the target DNA has to be immobilized on the FET gate surface. A common
method for probe DNA functionalization is based on thiol–gold
chemistry, immobilizing thiol-modified probe DNA on a gold gate with
thiol–gold bonds. A self-assembled monolayer (SAM), based on
the same thiol–gold chemistry, is also needed to passivate
the rest of the gold gate surface to prevent non-specific adsorption
and to enable favorable steric configuration of the probe DNA. Herein,
the applicability of such FET-based potentiometric DNA sensing was
carefully investigated, using a silicon nanoribbon FET with a gold-sensing
gate modified with thiol–gold chemistry. We discover that the
potential of the gold-sensing electrode is determined by the mixed
potential of the gold–thiol and gold–oxygen redox interactions.
This mixed potential gives rise to a redox buffer effect which buffers
the change in the surface charge induced by the DNA hybridization,
thus suppressing the potentiometric signal. Analogous redox buffer
effects may also be present for other types of potentiometric detections
of biomarkers based on thiol–gold chemistry.
Collapse
Affiliation(s)
- Xingxing Xu
- Division of Solid-State Electronics, Department of Electrical Engineering, Ångström Laboratory, Uppsala University, P.O. Box 65, Uppsala SE-75103, Sweden
| | - Yingtao Yu
- Division of Solid-State Electronics, Department of Electrical Engineering, Ångström Laboratory, Uppsala University, P.O. Box 65, Uppsala SE-75103, Sweden
| | - Qitao Hu
- Division of Solid-State Electronics, Department of Electrical Engineering, Ångström Laboratory, Uppsala University, P.O. Box 65, Uppsala SE-75103, Sweden
| | - Si Chen
- Division of Solid-State Electronics, Department of Electrical Engineering, Ångström Laboratory, Uppsala University, P.O. Box 65, Uppsala SE-75103, Sweden
| | - Leif Nyholm
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Zhen Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering, Ångström Laboratory, Uppsala University, P.O. Box 65, Uppsala SE-75103, Sweden
| |
Collapse
|
3
|
Bolotsky A, Butler D, Dong C, Gerace K, Glavin NR, Muratore C, Robinson JA, Ebrahimi A. Two-Dimensional Materials in Biosensing and Healthcare: From In Vitro Diagnostics to Optogenetics and Beyond. ACS NANO 2019; 13:9781-9810. [PMID: 31430131 DOI: 10.1021/acsnano.9b03632] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the isolation of graphene in 2004, there has been an exponentially growing number of reports on layered two-dimensional (2D) materials for applications ranging from protective coatings to biochemical sensing. Due to the exceptional, and often tunable, electrical, optical, electrochemical, and physical properties of these materials, they can serve as the active sensing element or a supporting substrate for diverse healthcare applications. In this review, we provide a survey of the recent reports on the applications of 2D materials in biosensing and other emerging healthcare areas, ranging from wearable technologies to optogenetics to neural interfacing. Specifically, this review provides (i) a holistic evaluation of relevant material properties across a wide range of 2D systems, (ii) a comparison of 2D material-based biosensors to the state-of-the-art, (iii) relevant material synthesis approaches specifically reported for healthcare applications, and (iv) the technological considerations to facilitate mass production and commercialization.
Collapse
Affiliation(s)
| | | | - Chengye Dong
- State Key Lab of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , People's Republic of China
| | | | - Nicholas R Glavin
- Materials and Manufacturing Directorate , Air Force Research Laboratory , WPAFB , Ohio 45433 , United States
| | - Christopher Muratore
- Department of Chemical and Materials Engineering , University of Dayton , Dayton , Ohio 45469 , United States
| | | | | |
Collapse
|
4
|
Baraban L, Ibarlucea B, Baek E, Cuniberti G. Hybrid Silicon Nanowire Devices and Their Functional Diversity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900522. [PMID: 31406669 PMCID: PMC6685480 DOI: 10.1002/advs.201900522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Indexed: 05/06/2023]
Abstract
In the pool of nanostructured materials, silicon nanostructures are known as conventionally used building blocks of commercially available electronic devices. Their application areas span from miniaturized elements of devices and circuits to ultrasensitive biosensors for diagnostics. In this Review, the current trends in the developments of silicon nanowire-based devices are summarized, and their functionalities, novel architectures, and applications are discussed from the point of view of analog electronics, arisen from the ability of (bio)chemical gating of the carrier channel. Hybrid nanowire-based devices are introduced and described as systems decorated by, e.g., organic complexes (biomolecules, polymers, and organic films), aimed to substantially extend their functionality, compared to traditional systems. Their functional diversity is explored considering their architecture as well as areas of their applications, outlining several groups of devices that benefit from the coatings. The first group is the biosensors that are able to represent label-free assays thanks to the attached biological receptors. The second group is represented by devices for optoelectronics that acquire higher optical sensitivity or efficiency due to the specific photosensitive decoration of the nanowires. Finally, the so-called new bioinspired neuromorphic devices are shown, which are aimed to mimic the functions of the biological cells, e.g., neurons and synapses.
Collapse
Affiliation(s)
- Larysa Baraban
- Max Bergmann Center of Biomaterials and Institute for Materials ScienceTechnische Universität Dresden01062DresdenGermany
- Center for Advancing Electronics Dresden (CfAED) TU Dresden01062DresdenGermany
| | - Bergoi Ibarlucea
- Max Bergmann Center of Biomaterials and Institute for Materials ScienceTechnische Universität Dresden01062DresdenGermany
- Center for Advancing Electronics Dresden (CfAED) TU Dresden01062DresdenGermany
| | - Eunhye Baek
- Max Bergmann Center of Biomaterials and Institute for Materials ScienceTechnische Universität Dresden01062DresdenGermany
- Center for Advancing Electronics Dresden (CfAED) TU Dresden01062DresdenGermany
| | - Gianaurelio Cuniberti
- Max Bergmann Center of Biomaterials and Institute for Materials ScienceTechnische Universität Dresden01062DresdenGermany
- Center for Advancing Electronics Dresden (CfAED) TU Dresden01062DresdenGermany
| |
Collapse
|
5
|
Rollo S, Rani D, Leturcq R, Olthuis W, Pascual García C. High Aspect Ratio Fin-Ion Sensitive Field Effect Transistor: Compromises toward Better Electrochemical Biosensing. NANO LETTERS 2019; 19:2879-2887. [PMID: 31014066 DOI: 10.1021/acs.nanolett.8b04988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of next generation medicines demands more sensitive and reliable label-free sensing able to cope with increasing needs of multiplexing and shorter times to results. Field effect transistor-based biosensors emerge as one of the main possible technologies to cover the existing gap. The general trend for the sensors has been miniaturization with the expectation of improving sensitivity and response time but presenting issues with reproducibility and noise level. Here we propose a Fin-Field Effect Transistor (FinFET) with a high height to width aspect ratio for electrochemical biosensing solving the issue of nanosensors in terms of reproducibility and noise, while keeping the fast response time. We fabricated different devices and characterized their performance with their response to the pH changes that fitted to a Nernst-Poisson model. The experimental data were compared with simulations of devices with different aspect ratio, establishing an advantage in linearity and lower device resistance to provide higher current signals for the FinFETs with higher aspect ratio. In addition, these FinFETs promise the optimization of reliability and efficiency in terms of limits of detection for which the interplay of the size and geometry of the sensor with the diffusion of the analytes plays a pivotal role.
Collapse
Affiliation(s)
- Serena Rollo
- Materials Research and Technology Department , Luxembourg Institute of Science and Technology (LIST) , Belvaux L-4422 , Luxembourg
- BIOS Lab on Chip Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7522 , The Netherlands
| | - Dipti Rani
- Materials Research and Technology Department , Luxembourg Institute of Science and Technology (LIST) , Belvaux L-4422 , Luxembourg
| | - Renaud Leturcq
- Materials Research and Technology Department , Luxembourg Institute of Science and Technology (LIST) , Belvaux L-4422 , Luxembourg
| | - Wouter Olthuis
- BIOS Lab on Chip Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7522 , The Netherlands
| | - César Pascual García
- Materials Research and Technology Department , Luxembourg Institute of Science and Technology (LIST) , Belvaux L-4422 , Luxembourg
| |
Collapse
|