1
|
Alfonsi S, Karunathasan P, Mamodaly-Samdjee A, Balathandayutham K, Lefevre S, Miranda A, Gallet O, Seyer D, Hindié M. Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts' Adhesion but Affected Their Behavior. J Funct Biomater 2023; 15:5. [PMID: 38276478 PMCID: PMC10817067 DOI: 10.3390/jfb15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The implantation of metallic orthopedic prostheses is increasingly common due to an aging population and accidents. There is a real societal need to implement new metal implants that combine durability, good mechanical properties, excellent biocompatibility, as well as affordable costs. Since the functionalization of low-cost 316L stainless steel substrates through the successive electrodeposition of a polypyrrole film (PPy) and a calcium phosphate deposit doped with silicon was previously carried out by our labs, we have also developed a bio-functional coating by electrodepositing or oxidating of fibronectin (Fn) coating. Fn is an extracellular matrix glycoprotein involved in cell adhesion and differentiation. Impacts of either electrodeposition or oxidation on the structure and functionality of Fn were first studied. Thus, electrodeposition is the technique that permits the highest deposition of fibronectin, compared to adsorption or oxidation. Furthermore, electrodeposition seems to strongly modify Fn conformation by the formation of intermingled long fibers, resulting in changes to the accessibility of the molecular probes tested (antibodies directed against Fn whole molecule and Fn cell-binding domain). Then, the effects of either electrodeposited Fn or oxidized Fn were validated by the resulting pre-osteoblast behavior. Electrodeposition reduced pre-osteoblasts' ability to remodel Fn coating on supports because of a partial modification of Fn conformation, which reduced accessibility to the cell-binding domain. Electrodeposited Fn also diminished α5 integrin secretion and clustering along the plasma membrane. However, the N-terminal extremity of Fn was not modified by electrodeposition as demonstrated by Staphylococcus aureus attachment after 3 h of culture on a specific domain localized in this region. Moreover, the number of pre-osteoblasts remains stable after 3 h culture on either adsorbed, oxidized, or electrodeposited Fn deposits. In contrast, mitochondrial activity and cell proliferation were significantly higher on adsorbed Fn compared with electrodeposited Fn after 48 h culture. Hence, electro-deposited Fn seems more favorable to pre-osteoblast early-stage behavior than during a longer culture of 24 h and 48 h. The electrodeposition of matrix proteins could be improved to maintain their bio-activity and to develop this promising, fast technique to bio-functionalize metallic implants.
Collapse
Affiliation(s)
- Séverine Alfonsi
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Pithursan Karunathasan
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Ayann Mamodaly-Samdjee
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Keerthana Balathandayutham
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Sarah Lefevre
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Anamar Miranda
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Olivier Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Damien Seyer
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| |
Collapse
|
2
|
Liu X, Ke L, Lei K, Yu Q, Zhang W, Li C, Tian Z. Antibiotic-induced gut microbiota dysbiosis has a functional impact on purine metabolism. BMC Microbiol 2023; 23:187. [PMID: 37442943 PMCID: PMC10339580 DOI: 10.1186/s12866-023-02932-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Dysbiosis of the gut microbiota is closely linked to hyperuricemia. However, the effect of the microbiome on uric acid (UA) metabolism remains unclear. This study aimed to explore the mechanisms through which microbiomes affect UA metabolism with the hypothesis that modifying the intestinal microbiota influences the development of hyperuricemia. RESULTS We proposed combining an antibiotic strategy with protein-protein interaction analysis to test this hypothesis. The data demonstrated that antibiotics altered the composition of gut microbiota as UA increased, and that the spectrum of the antibiotic was connected to the purine salvage pathway. The antibiotic-elevated UA concentration was dependent on the increase in microbiomes that code for the proteins involved in purine metabolism, and was paralleled by the depletion of bacteria-coding enzymes required for the purine salvage pathway. On the contrary, the microbiota with abundant purine salvage proteins decreased hyperuricemia. We also found that the antibiotic-increased microbiota coincided with a higher relative abundance of bacteria in hyperuricemia mice. CONCLUSIONS An antibiotic strategy combined with the prediction of microbiome bacterial function presents a feasible method for defining the key bacteria involved in hyperuricemia. Our investigations discovered that the core microbiomes of hyperuricemia may be related to the gut microbiota that enriches purine metabolism related-proteins. However, the bacteria that enrich the purine salvage-proteins may be a probiotic for decreasing urate, and are more likely to be killed by antibiotics. Therefore, the purine salvage pathway may be a potential target for the treatment of both hyperuricemia and antibiotic resistance.
Collapse
Affiliation(s)
- Xin Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Leyong Ke
- Department of Cosmetic surgery, Kunming Medical University, Kunming, 650000, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Qian Yu
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wenqing Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266003, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
3
|
Yang Y, Zhang H, Komasa S, Morimoto Y, Sekino T, Kawazoe T, Okazaki J. UV/ozone irradiation manipulates immune response for antibacterial activity and bone regeneration on titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112377. [PMID: 34579896 DOI: 10.1016/j.msec.2021.112377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
The immunomodulatory antibacterial activity and osteoimmunomodulatory properties of implantable biomaterials significantly influence bone regeneration. Various types of ultraviolet (UV) instrument are currently in use to greatly enhance the antibacterial activity and osteoconductive capability of titanium, it remains unclear how UV treatment modulates immune response. Compared to traditional UV treatment, the combination of low-dose ozone with UV irradiation is considered a new option to give benefits to surface modification and reduce the drawbacks of UV and ozone individually. Herein, the aim of this study was to elucidate the immune-modulatory properties of macrophages on UV/ozone-irradiated titanium that serve as defense against S. aureus and the crosstalk between immune cells and osteoblasts. Three different cell and bacteria co-culture systems were developed in order to investigate the race between host cells and bacteria to occupy the surface. In vitro immunological experiments indicated that UV/ozone irradiation significantly enhanced the phagocytic and bactericidal activity of macrophages against S. aureus. Further, in vitro and in vivo studies evidenced the favorable osteoimmune environment for osteogenic differentiation and bone formation. This research suggests vital therapeutic potential of UV/ozone irradiation for preventing the biomaterial-associated infections and achieving favorable bone formation simultaneously.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan.
| | - Honghao Zhang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan.
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Yukihiro Morimoto
- The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tohru Sekino
- The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takayoshi Kawazoe
- Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
4
|
Prévost V, Anselme K, Gallet O, Hindié M, Petithory T, Valentin J, Veuillet M, Ploux L. Real-Time Imaging of Bacteria/Osteoblast Dynamic Coculture on Bone Implant Material in an in Vitro Postoperative Contamination Model. ACS Biomater Sci Eng 2019; 5:3260-3269. [PMID: 33405569 DOI: 10.1021/acsbiomaterials.9b00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biomedical implants are an important part of evolving modern medicine but have a potential drawback in the form of postoperative pathogenic infection. Accordingly, the "race for surface" combat between invasive bacteria and host cells determines the fate of implants. Hence, proper in vitro systems are required to assess effective strategies to avoid infection. In this study, we developed a real time observation model, mimicking postoperative contamination, designed to follow E. coli proliferation on a titanium surface occupied by human osteoblastic progenitor cells (STRO). This model allowed us to monitor E. coli invasion of human cells on titanium surfaces coated and uncoated with fibronectin. We showed that the surface colonization of bacteria is significantly enhanced on fibronectin coated surfaces irrespective of whether areas were uncovered or covered with human cells. We further revealed that bacterial colonization of the titanium surfaces is enhanced in coculture with STRO cells. Finally, this coculture system provides a comprehensive system to describe in vitro and in situ bacterial and human cells and their localization but also to target biological mechanisms involved in adhesion as well as in interactions with surfaces, thanks to fluorescent labeling. This system is thus an efficient method for studies related to the design and function of new biomaterials.
Collapse
Affiliation(s)
- Victor Prévost
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France.,Université de Cergy-Pontoise, ERRMECe, F-95000 Neuville-sur-Oise, France
| | - Karine Anselme
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France
| | - Olivier Gallet
- Université de Cergy-Pontoise, ERRMECe, F-95000 Neuville-sur-Oise, France
| | - Mathilde Hindié
- Université de Cergy-Pontoise, ERRMECe, F-95000 Neuville-sur-Oise, France
| | - Tatiana Petithory
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France
| | - Jules Valentin
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France
| | - Mathieu Veuillet
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France
| | - Lydie Ploux
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France.,Université de Strasbourg, INSERM, BIOMAT U1121, F-67000 Strasbourg, France
| |
Collapse
|
5
|
Chu L, Yang Y, Yang S, Fan Q, Yu Z, Hu XL, James TD, He XP, Tang T. Preferential Colonization of Osteoblasts Over Co-cultured Bacteria on a Bifunctional Biomaterial Surface. Front Microbiol 2018; 9:2219. [PMID: 30333796 PMCID: PMC6176048 DOI: 10.3389/fmicb.2018.02219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Implant-related infection is a devastating complication in clinical trauma and orthopedics. The aim of this study is to use a bifunctional biomaterial surface in order to investigate the competitive colonization between osteoblasts and bacteria, which is the cause of implant-related infection. A bone-engineering material capable of simultaneously facilitating osteoblast adhesion and inhibiting the growth of Staphylococcus aureus (S. aureus) was prepared. Then, three different co-cultured systems were developed in order to investigate the competitive colonization between the two cohorts on the surface. The results suggested that while the pre-culturing of either cohort compromised the subsequent adhesion of the other according to the ‘race for the surface’ theory, the synergistic effect of preferential cell adhesion and antibacterial activity of the bifunctional surface led to the predominant colonization and survival of osteoblasts, effectively inhibiting the bacterial adhesion and biofilm formation of S. aureus in the co-culture systems with both cohorts. This research offers new insight into the investigation of competitive surface-colonization between osteoblasts and bacteria for implant-related infection.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, East China University of Science and Technology, Shanghai, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, East China University of Science and Technology, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|