1
|
Labombarde JG, Pillai MR, Wehenkel M, Lin CY, Keating R, Brown SA, Crawford JC, Brice DC, Castellaw AH, Mandarano AH, Guy CS, Mejia JR, Lewis CD, Chang TC, Oshansky CM, Wong SS, Webby RJ, Yan M, Li Q, Marion TN, Thomas PG, McGargill MA. Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity. Cell Rep 2022; 38:110482. [PMID: 35263574 PMCID: PMC9036619 DOI: 10.1016/j.celrep.2022.110482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022] Open
Abstract
Infection and vaccination repeatedly expose individuals to antigens that are conserved between influenza virus subtypes. Nevertheless, antibodies recognizing variable influenza epitopes greatly outnumber antibodies reactive against conserved epitopes. Elucidating factors contributing to the paucity of broadly reactive influenza antibodies remains a major obstacle for developing a universal influenza vaccine. Here, we report that inducing broadly reactive influenza antibodies increases autoreactive antibodies in humans and mice and exacerbates disease in four distinct models of autoimmune disease. Importantly, transferring broadly reactive influenza antibodies augments disease in the presence of inflammation or autoimmune susceptibility. Further, broadly reactive influenza antibodies spontaneously arise in mice with defects in B cell tolerance. Together, these data suggest that self-tolerance mechanisms limit the prevalence of broadly reactive influenza antibodies, which can exacerbate disease in the context of additional risk factors.
Collapse
Affiliation(s)
- Jocelyn G. Labombarde
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Meenu R. Pillai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Chun-Yang Lin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rachael Keating
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David C. Brice
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ashley H. Castellaw
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Clifford S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Juan R. Mejia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Carlessia D. Lewis
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christine M. Oshansky
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Present address: Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China,Present address: State Key Laboratory of Respiratory Diseases & National Clinical Research Center for Respiratory Disease, Guangzhou, P.R. China,Present address: School of Public Health, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan–Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tony N. Marion
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Lead contact,Correspondence:
| |
Collapse
|
2
|
Haji-Ghassemi O, Müller-Loennies S, Brooks CL, MacKenzie CR, Caveney N, Van Petegem F, Brade L, Kosma P, Brade H, Evans SV. Subtle Changes in the Combining Site of the Chlamydiaceae-Specific mAb S25-23 Increase the Antibody-Carbohydrate Binding Affinity by an Order of Magnitude. Biochemistry 2019; 58:714-726. [PMID: 30571096 DOI: 10.1021/acs.biochem.8b00318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Murine antibodies S25-23, S25-26, and S25-5 derive from a common germ-line origin, and all bind the Chlamydiaceae family-specific epitope αKdo(2→8)αKdo(2→4)αKdo (where Kdo is 3-deoxy-α-d- manno-oct-2-ulosonic acid) with high affinity and specificity. These antibodies recognize the entire trisaccharide antigen in a linkage-dependent manner via a groove composed largely of germ-line residues. Despite sharing identical heavy and light chain genes, S25-23 binds the family-specific epitope with nanomolar affinity, which is an order of magnitude higher than that of S25-26, while S25-5 displays an affinity between those of S25-23 and S25-26. We determined the high-resolution crystal structures of S25-23 and S25-5 antigen binding fragments in complex with a pentasaccharide derived from the LPS of Chlamydia and measured the affinity of S25-5 for chlamydial LPS antigens using isothermal titration microcalorimetry. The 1.75 Å resolution structure of S25-23 shows how subtle conservative mutations Arg(L)-27E to lysine and Ser(H)-56 to threonine lead to an order of magnitude increase in affinity. Importantly, comparison between previous S25-26 structures and the 1.99 and 2.05 Å resolution liganded and unliganded structures of S25-5, respectively, shows how a Ser(L)-27E mutation results in an intermediate affinity due to the reduced enthalpic penalty associated with complex formation that would otherwise be required for arginine in this position. This strategy allows for subtle adjustments in the combining site via affinity maturation that have dramatic consequences for the affinity of an antibody for its antigen.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Microbiology , University of Victoria , P.O. Box 3055 STN CSC, Victoria , British Columbia , Canada V8P 3P6
| | - Sven Müller-Loennies
- Research Center Borstel , Leibniz Lung Center , Parkallee 22 , Borstel D-23845 , Germany
| | - Cory L Brooks
- Department of Chemistry , Fresno State University , 2555 East San Ramon Avenue, MS SB70 , Fresno , California 93740 , United States
| | - C Roger MacKenzie
- Human Health Therapeutics Portfolio , National Research Council Canada , 100 Sussex Drive , Ottawa , Ontario , Canada K1A 0R6
| | - Nathanael Caveney
- Department of Biochemistry and Microbiology , University of Victoria , P.O. Box 3055 STN CSC, Victoria , British Columbia , Canada V8P 3P6
| | - Filip Van Petegem
- Department of Chemistry , University of Natural Resources and Life Sciences , A-1190 Vienna , Austria
| | - Lore Brade
- Research Center Borstel , Leibniz Lung Center , Parkallee 22 , Borstel D-23845 , Germany
| | - Paul Kosma
- Department of Chemistry , University of Natural Resources and Life Sciences , A-1190 Vienna , Austria
| | - Helmut Brade
- Research Center Borstel , Leibniz Lung Center , Parkallee 22 , Borstel D-23845 , Germany
| | - Stephen V Evans
- Department of Biochemistry and Microbiology , University of Victoria , P.O. Box 3055 STN CSC, Victoria , British Columbia , Canada V8P 3P6
| |
Collapse
|
3
|
Hori A, Fujimura T, Kawamoto S. Anti-inflammatory intravenous immunoglobulin (IVIg) suppresses homeostatic proliferation of B cells. Cytotechnology 2018; 70:921-927. [PMID: 29611058 PMCID: PMC6021294 DOI: 10.1007/s10616-017-0176-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023] Open
Abstract
An intravenous injection of plasma-derived immunoglobulins is used for the treatment of severe infectious and autoimmune disorders. Despite of its clinical efficacy, precise mechanisms by which intravenous immunoglobulin (IVIg) suppresses proinflammatory immune response are still enigmatic. Here, we provide in vitro evidence that IVIg inhibits homeostatic proliferation of B cells accompanied by induction of their cell aggregation. The IVIg-driven suppression of B cell proliferation and induction of cell aggregation are both unaffected by treatment with a neutralizing antibody against low-affinity Fc receptors for IgG (CD16/FcγRIII and CD32/FcγRII), known cell surface ligands for IVIg. Our observations propose a new immunosuppressive action of IVIg, which directly acts on steady-state B cells to suppress their homeostatic expansion.
Collapse
Affiliation(s)
- Ayane Hori
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Takashi Fujimura
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| |
Collapse
|