1
|
Ranakoti L, Gangil B, Bhandari P, Singh T, Sharma S, Singh J, Singh S. Promising Role of Polylactic Acid as an Ingenious Biomaterial in Scaffolds, Drug Delivery, Tissue Engineering, and Medical Implants: Research Developments, and Prospective Applications. Molecules 2023; 28:485. [PMID: 36677545 PMCID: PMC9861437 DOI: 10.3390/molecules28020485] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
In the present scenario, the research is now being focused on the naturally occurring polymers that can gradually replace the existing synthetic polymers for the development of bio composites having applications in medical surgeries and human implants. With promising mechanical properties and bio compatibility with human tissues, poly lactic acid (PLA) is now being viewed as a future bio material. In order to examine the applicability of PLA in human implants, the current article sheds light on the synthesis of PLA and its various copolymers used to alter its physical and mechanical properties. In the latter half, various processes used for the fabrication of biomaterials are discussed in detail. Finally, biomaterials that are currently in use in the field of biomedical (Scaffolding, drug delivery, tissue engineering, medical implants, derma, cosmetics, medical surgeries, and human implants) are represented with respective advantages in the sphere of biomaterials.
Collapse
Affiliation(s)
- Lalit Ranakoti
- Department of Mechanical Engineering, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Brijesh Gangil
- Mechanical Engineering Department, SOET, HNB Garhwal University, Srinagar 246174, Uttarakhand, India
| | - Prabhakar Bhandari
- Mechanical Engineering Department, SOET, K. R. Mangalam University, Gurgaon 122103, Haryana, India
| | - Tej Singh
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jujhar Singh
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
| | - Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
2
|
Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, Ahmadi M, Włodarczyk-Biegun MK, Ghavami S, Likus W, Siemianowicz K, Łos MJ. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int J Mol Sci 2022; 23:ijms232416185. [PMID: 36555829 PMCID: PMC9785373 DOI: 10.3390/ijms232416185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Biomaterials for tissue scaffolds are key components in modern tissue engineering and regenerative medicine. Targeted reconstructive therapies require a proper choice of biomaterial and an adequate choice of cells to be seeded on it. The introduction of stem cells, and the transdifferentiation procedures, into regenerative medicine opened a new era and created new challenges for modern biomaterials. They must not only fulfill the mechanical functions of a scaffold for implanted cells and represent the expected mechanical strength of the artificial tissue, but furthermore, they should also assure their survival and, if possible, affect their desired way of differentiation. This paper aims to review how modern biomaterials, including synthetic (i.e., polylactic acid, polyurethane, polyvinyl alcohol, polyethylene terephthalate, ceramics) and natural (i.e., silk fibroin, decellularized scaffolds), both non-biodegradable and biodegradable, could influence (tissue) stem cells fate, regulate and direct their differentiation into desired target somatic cells.
Collapse
Affiliation(s)
- Rency Geevarghese
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyedeh Sara Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Andrzej Hudecki
- Łukasiewicz Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland
| | - Samad Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | | | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Małgorzata K. Włodarczyk-Biegun
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| |
Collapse
|
3
|
Ozudogru E, Arslan YE. A preliminary study on the development of a novel biomatrix by decellularization of bovine spinal meninges for tissue engineering applications. Cell Tissue Bank 2020; 22:25-38. [PMID: 32862393 DOI: 10.1007/s10561-020-09859-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022]
Abstract
Here, we aim at developing a novel biomatrix from decellularized bovine spinal meninges for tissue engineering and regenerative medicine applications. Within this concept, the bovine spinal meninges were decellularized using 1% Triton X-100 for 48 h, and residual nuclear content was determined with double-strand DNA content analysis and agarose gel electrophoresis. The major matrix components such as sulfated GAGs and collagen before and after the decellularization process were analyzed with DMMB, hydroxyproline assay and SDS-PAGE. Subsequently, the native bovine spinal meninges (nBSM) and decellularized BSM (dBSM) were physiochemically characterized via ATR-FTIR spectroscopy, TGA, DMA and tensile strength test. The dsDNA content in the nBSM was 153.39 ± 53.93 ng/mg dry weight, versus in the dBSM was 39.47 ± 4.93 ng/mg (n = 3) dry weight and DNA fragments of more than 200 bp in length were not detected in the dBSM by agarose gel electrophoresis. The sulfated GAGs contents for nBSM and dBSM were observed to be 10.87 ± 1.2 and 11.42 ± 2.01 μg/mg dry weight, respectively. The maximum strength of dBSM in dry and wet conditions was found to be 19.67 ± 0.21 MPa and 13.97 ± 0.17 MPa, while nBSM (dry) was found to be 26.26 ± 0.28 MPa. MTT, SEM, and histology results exhibited that the cells attached to the surface of dBSM, and proliferated on the dBSM. In conclusion, the in vitro preliminary study has demonstrated that the dBSM might be a proper and new bioscaffold for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Eren Ozudogru
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey.
| |
Collapse
|
4
|
Yan HC, Yu TT, Li J, Qiao YQ, Wang LC, Zhang T, Li Q, Zhou YH, Liu DW. The Delivery of Extracellular Vesicles Loaded in Biomaterial Scaffolds for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:1015. [PMID: 32974327 PMCID: PMC7466762 DOI: 10.3389/fbioe.2020.01015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous nanoparticles actively released by cells that comprise highly conserved and efficient systems of intercellular communication. In recent years, numerous studies have proven that EVs play an important role in the field of bone tissue engineering (BTE) due to several advantages, such as good biosafety, stability and efficient delivery. However, the application of EVs therapies in bone regeneration has not been widely used. One of the major challenges for the application of EVs is the lack of sufficient scaffolds to load and control the release of EVs. Thus, in this review, we describe the most advanced current strategies for delivering EVs with various biomaterials for the use in bone regeneration, the role of EVs in bone regeneration, the distribution of EVs mediated by biomaterials and common methods of promoting EVs delivery efficacy with a focus on biomaterial properties.
Collapse
Affiliation(s)
- Hui-Chun Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ting-Ting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jing Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yi-Qiang Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin-Chuan Wang
- Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Da-Wei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
5
|
Şimşek E, Karaca B, Arslan YE. Bioengineered three-dimensional physical constructs from quince seed mucilage for human adipose-derived mesenchymal stem cells. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520918390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we aimed at fabricating a novel porous physical construct from quince seed mucilage for translational medicine applications. To achieve this goal, quince seed mucilage was extracted, molded, and freeze-dried. After being freeze-dried, the molded constructs were chemically crosslinked with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide to maintain the mechanical integrity of the structure. The fabricated scaffolds were characterized in-depth by scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, thermogravimetric analysis, and dynamic mechanical analysis in addition to the swelling, liquid uptake, and porosity tests. The extraction yield of mucilage was calculated to be 6.28% ± 0.40% (n = 3). The swelling ratio of crosslinked quince seed mucilage–derived scaffolds was found to be 12,677.50% ± 388.82% (n = 3), whereas the porosity of crosslinked quince seed mucilage–derived scaffolds was 83.43% ± 2.84% (n = 3). The analyses confirmed the crosslinked quince seed mucilage–derived scaffolds to be possessed interconnected, highly porous structure. Afterward, human adipose-derived mesenchymal stem cells were seeded on the crosslinked quince seed mucilage–derived scaffolds, and the cell viability on the scaffolds was assessed with 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The MTT results revealed the scaffolds not to be possessed any cytotoxic effect on seeded cells. Human adipose-derived mesenchymal stem cells adhesion and migration on the crosslinked quince seed mucilage–derived scaffolds were also evaluated histologically using hematoxylin and eosin staining in addition to scanning electron microscopy analysis. In conclusion, we believe that crosslinked quince seed mucilage–derived scaffolds have the potential to be an alternative to routinely used polysaccharides in regenerative medicine applications.
Collapse
Affiliation(s)
- Ekin Şimşek
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Burak Karaca
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
6
|
Arslan YE, Efe B, Sezgin Arslan T. A novel method for constructing an acellular 3D biomatrix from bovine spinal cord for neural tissue engineering applications. Biotechnol Prog 2019; 35:e2814. [PMID: 30963718 DOI: 10.1002/btpr.2814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/21/2019] [Accepted: 04/03/2019] [Indexed: 12/29/2022]
Abstract
In this study, we aimed at generating 3-dimensional (3D) decellularized bovine spinal cord extracellular matrix-based scaffolds (3D-dCBS) for neural tissue engineering applications. Within this scope, bovine spinal cord tissue pieces were homogenized in 0.1 M NaOH and this viscous mixture was molded to attain 3D bioscaffolds. After resultant bioscaffolds were chemically crosslinked, the decellularization process was conducted with detergent, buffer, and enzyme solutions. Nuclear remnants in the native tissue and 3D-dCBS were determined with DNA content analysis and agarose gel electrophoresis. Afterward, 3D-dCBS were biochemically characterized in depth via glycosaminoglycan (GAG) content, hydroxyproline (HYP) assay, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Cellular survival of human adipose-derived mesenchymal stem cells (hAMSCs) on the 3D-dCBS for 3rd, 7th, and 10th days was assessed via MTT assay. Scaffold and cell/scaffold constructs were also evaluated with scanning electron microscopy and histochemical studies. DNA contents for native and 3D-dCBS were respectively found to be 520.76 ± 18.11 and 28.80 ± 0.20 ng/mg dry weight (n = 3), indicating a successful decellularization process. GAG content, HYP assay, and SDS-PAGE results proved that the extracellular matrix was substantially preserved during the decellularization process. In conclusion, it is believed that the novel decellularization method may allow fabricating 3D bioscaffolds with desired geometry from soft nervous system tissues.
Collapse
Affiliation(s)
- Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Burcu Efe
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Tugba Sezgin Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|