1
|
Zia A, Khalid S, Rasool N, Mohsin N, Imran M, Toma SI, Misarca C, Andreescu O. Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals (Basel) 2024; 17:1370. [PMID: 39459010 PMCID: PMC11509998 DOI: 10.3390/ph17101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A strong synthetic tool for many naturally occurring chemicals, polymers, and pharmaceutical substances is transition metal-catalyzed synthesis. A serious concern to human health is the emergence of bacterial resistance to a broad spectrum of antibacterial medications. The synthesis of chemical molecules that are potential antibacterial candidates is underway. The main contributions to medicine are found to be effective in transition metal catalysis and heterocyclic chemistry. This review underlines the use of heterocycles and certain effective transition metals (Pd, Cu, and Ni) as catalysts in chemical methods for the synthesis of antibacterial compounds. Pharmaceutical chemists might opt for clinical exploration of these techniques due to their potential.
Collapse
Affiliation(s)
- Almeera Zia
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sebastian Ionut Toma
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Oana Andreescu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| |
Collapse
|
2
|
Salinas-Moreno Y, Arteaga-Garibay R, Arroyo-Silva A, Ordaz-Ortiz JJ, Ruvalcaba-Gómez JM, Gálvez-Marroquín LA. Antimicrobial activity and phenolic composition of varieties of Hibiscus sabdariffa L. with red and white calyces. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2022.2152099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yolanda Salinas-Moreno
- Laboratorio de Calidad de Cultivos para uso Humano y Pecuario, Campo Experimental Centro Altos de Jalisco, INIFAP, Tepatitlán de Morelos, Mexico
| | | | - Anita Arroyo-Silva
- Laboratorio de Metabolómica y Espectrometría de Masas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - José J. Ordaz-Ortiz
- Laboratorio de Metabolómica y Espectrometría de Masas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | | | | |
Collapse
|
3
|
Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents. Food Sci Biotechnol 2022; 31:985-997. [PMID: 35873378 PMCID: PMC9300781 DOI: 10.1007/s10068-022-01058-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. Food-derived polyphenols with such antibacterial activity are natural preservatives and can be used as an alternative to synthetic preservatives that can cause side effects, such as allergies, asthma, skin irritation, and cancer. Studies have reported that polyphenols have positive effects, such as decreasing harmful bacteria and increasing beneficial bacteria in the human gut microbiota. Polyphenols can also be used as natural antibacterial agents in food packaging system in the form of emitting sachets, absorbent pads, and edible coatings. We summarized the antibacterial activities, mechanisms and applications of polyphenols as antibacterial agents against foodborne bacteria.
Collapse
|
4
|
Polyphenol-Rich Larix decidua Bark Extract with Antimicrobial Activity against Respiratory-Tract Pathogens: A Novel Bioactive Ingredient with Potential Pharmaceutical and Nutraceutical Applications. Antibiotics (Basel) 2021; 10:antibiotics10070789. [PMID: 34203520 PMCID: PMC8300756 DOI: 10.3390/antibiotics10070789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Larch (Larix decidua) bark is a sawmill waste, traditionally used for antiseptic, expectorant and dermatological (wound healing, eczema, psoriasis) purposes. In this work, we developed a food-grade dry larch bark extract (LBE) from sawmill by-products using hydro-alcoholic extraction. The antibacterial activity of LBE was evaluated against respiratory-tract pathogens, i.e., Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas aeruginosa and Haemophilus influenza, and it was compared to that of grapefruit seed extract (GSE), a commercially available raw material commonly proposed as antibacterial ingredient for over-the-counter products. Procyanidins (PACs) and other polyphenols contents in LBE were determined by HPLC-FLD-MS and HPLC-DAD-MSn, respectively. The antimicrobial activity of LBE and GSE was assessed using the micro-plate dilution technique in concentration range of 2-200 µg/mL, and the safety of these dosages was assessed in cellular and animal models. LBE showed considerable contents of PACs (15% w/w; especially B-type) and other polyphenols (3.8% w/w), among which the characteristic spiropolyphenols larixinol and epilarixinol were identified, together with the flavonoids isoquercitrin and rutin, already reported as growth inhibitors of different respiratory-tract pathogens. LBE showed higher antimicrobial activity compared to GSE, demonstrated by a growth inhibition range of 10-40% towards five of six strains tested, compared to 10-15% of GSE. These results suggest that LBE may represent a natural and sustainable source of active compounds with antibacterial activity for pharmaceutical and nutraceutical applications.
Collapse
|
5
|
do Carmo Ota E, Honorato CA, Heredia-Vieira SC, Flores-Quintana CI, de Castro Silva TS, Inoue LAKA, Cardoso CAL. Hepatic and gastroprotective activity of Serjania marginata leaf aqueous extract in Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1051-1065. [PMID: 31089991 DOI: 10.1007/s10695-019-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to assess the leaf aqueous extract composition of Serjania marginata and the effects of its inclusion on the diet of Nile tilapia (Oreochromis niloticus), with respect to the activity of digestive enzymes and enzymes associated with the metabolism of the liver and intestine and liver histopathology. Fish (initial mean weight, 54.36 ± 17.04 g) were divided into groups: fasting (without feeding), control (commercial feed), and treatment (commercial feed with leaf aqueous extract of Serjania marginata), and in each aquarium, there were five individuals and the fish fed ad libitum for 15 days. Treatment fish had ingested on average 224.3 mg of extract/kg of fish/day. In the extract analysis by mass spectrometry, quercitrin, isoquercitrin, A-type proanthocyanidin trimer, and quinic acid were identified. In the enzymatic activity, fish from the treatment group showed higher level of alkaline phosphatase, while the hepatotoxic markers (AST and ALT) and levels of lipase, amylase, and nonspecific protease did not differ (p > 0.05). In liver histopathological analysis, it was observed that fish from the treatment showed normal structure, while abnormalities were associated with control (fibrosis, loss of cordonal architecture, vacuolated hepatocytes with nucleus displaced to the periphery) and fasting (reduction in hepatocyte size and sinusoidal space). The intestine histopathology evidenced that the extract favored the development of goblet cells and intestinal fold height. The results indicated that the leaf aqueous extract of S. marginata assists in the structural maintenance of the liver and intestine and stimulates intestinal alkaline phosphatase production in Nile tilapia, suggesting that the identified compounds act on the liver and intestine, showing hepatoprotective effects and stimulating intestinal digestion.
Collapse
Affiliation(s)
- Erika do Carmo Ota
- Center of Studies on Natural Resources, Mato Grosso do Sul State University (UEMS), Cidade Universitária de Dourados, Rod. Dourados-Itahúm, Km 12, C.P. 351, Dourados, Mato Grosso do Sul, 79804-970, Brazil.
| | | | | | | | | | | | - Claudia Andrea Lima Cardoso
- Center of Studies on Natural Resources, Mato Grosso do Sul State University (UEMS), Cidade Universitária de Dourados, Rod. Dourados-Itahúm, Km 12, C.P. 351, Dourados, Mato Grosso do Sul, 79804-970, Brazil
| |
Collapse
|
6
|
Sharma PK, Romanczyk LJ, Kondaveti L, Reddy B, Arumugasamy J, Lombardy R, Gou Y, Schroeter H. Total Synthesis of Proanthocyanidin A1, A2, and Their Stereoisomers. Org Lett 2015; 17:2306-9. [DOI: 10.1021/acs.orglett.5b00646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pradeep K. Sharma
- Chemical Process Research & Development, Johnson Matthey Pharmaceutical Materials & Pharma Services, Devens, Massachusetts 01434, United States
| | - Leo J. Romanczyk
- MARS Incorporated, 6885
Elm Street, McLean, Virginia 22101, United States
| | - Leelakrishna Kondaveti
- Chemical Process Research & Development, Johnson Matthey Pharmaceutical Materials & Pharma Services, Devens, Massachusetts 01434, United States
| | - Bollu Reddy
- Chemical Process Research & Development, Johnson Matthey Pharmaceutical Materials & Pharma Services, Devens, Massachusetts 01434, United States
| | - Jeeva Arumugasamy
- Chemical Process Research & Development, Johnson Matthey Pharmaceutical Materials & Pharma Services, Devens, Massachusetts 01434, United States
| | - Richard Lombardy
- Chemical Process Research & Development, Johnson Matthey Pharmaceutical Materials & Pharma Services, Devens, Massachusetts 01434, United States
| | - Yanni Gou
- Chemical Process Research & Development, Johnson Matthey Pharmaceutical Materials & Pharma Services, Devens, Massachusetts 01434, United States
| | - Hagen Schroeter
- MARS Incorporated, 6885
Elm Street, McLean, Virginia 22101, United States
| |
Collapse
|
7
|
Tuominen A. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies. PHYTOCHEMISTRY 2013; 95:408-420. [PMID: 24050514 DOI: 10.1016/j.phytochem.2013.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/19/2013] [Accepted: 07/10/2013] [Indexed: 06/02/2023]
Abstract
Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i.e. pistil and leaf tannins protect against insect herbivores and root tannins against soil pathogens.
Collapse
Affiliation(s)
- Anu Tuominen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
8
|
Tuominen A, Toivonen E, Mutikainen P, Salminen JP. Defensive strategies in Geranium sylvaticum. Part 1: organ-specific distribution of water-soluble tannins, flavonoids and phenolic acids. PHYTOCHEMISTRY 2013; 95:394-407. [PMID: 23790750 DOI: 10.1016/j.phytochem.2013.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/09/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
A combination of high-resolution mass spectrometry and modern HPLC column technology, assisted by diode array detection, was used for accurate characterization of water-soluble polyphenolic compounds in the pistils, stamens, petals, sepals, stems, leaves, roots and seeds of Geranium sylvaticum. The organs contained a large variety of polyphenols, five types of tannins (ellagitannins, proanthocyanidins, gallotannins, galloyl glucoses and galloyl quinic acids) as well as flavonoids and simple phenolic acids. In all, 59 compounds were identified. Geraniin and other ellagitannins dominated in all the green photosynthetic organs. The other organs seem to produce distinctive polyphenol groups: pistils accumulated gallotannins; petals acetylglucose derivatives of galloylglucoses; stamens kaempferol glycosides, and seeds and roots accumulated proanthocyanidins. The intra-plant distribution of the different polyphenol groups may reflect the different functions and importance of various types of tannins as the defensive chemicals against herbivory.
Collapse
Affiliation(s)
- Anu Tuominen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20014 Turku, Finland.
| | | | | | | |
Collapse
|
9
|
Kylli P, Nohynek L, Puupponen-Pimiä R, Westerlund-Wikström B, Leppänen T, Welling J, Moilanen E, Heinonen M. Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: isolation, identification, and bioactivities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3373-3384. [PMID: 21370878 DOI: 10.1021/jf104621e] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
European, small-fruited cranberries (Vaccinium microcarpon) and lingonberries (Vaccinium vitis-idaea) were characterized for their phenolic compounds and tested for antioxidant, antimicrobial, antiadhesive, and antiinflammatory effects. The main phenolic compounds in both lingonberries and cranberries were proanthocyanidins comprising 63-71% of the total phenolic content, but anthocyanins, hydroxycinnamic acids, hydroxybenzoic acids, and flavonols were also found. Proanthocyanidins are polymeric phenolic compounds consisting mainly of catechin, epicatechin, gallocatechin, and epigallocatechin units. In the present study, proanthocyanidins were divided into three groups: dimers and trimers, oligomers (mDP 4-10), and polymers (mDP > 10). Catechin, epicatechin, A-type dimers and trimers were found to be the terminal units of isolated proanthocyanidin fractions. Inhibitions of lipid oxidation in liposomes were over 70% and in emulsions over 85%, and in most cases the oligomeric or polymeric fraction was the most effective. Polymeric proanthocyanidin extracts of lingonberries and cranberries were strongly antimicrobial against Staphylococcus aureus, whereas they had no effect on other bacterial strains such as Salmonella enterica sv. Typhimurium, Lactobacillus rhamnosus and Escherichia coli. Polymeric fraction of cranberries and oligomeric fractions of both lingonberries and cranberries showed an inhibitory effect on hemagglutination of E. coli, which expresses the M hemagglutin. Cranberry phenolic extract inhibited LPS-induced NO production in a dose-dependent manner, but it had no major effect on iNOS of COX-2 expression. At a concentration of 100 μg/mL cranberry phenolic extract inhibited LPS-induced IL-6, IL-1β and TNF-α production. Lingonberry phenolics had no significant effect on IL-1β production but inhibited IL-6 and TNF-α production at a concentration of 100 μg/mL similarly to cranberry phenolic extract. In conclusion the phenolics, notably proanthocyanidins (oligomers and polymers), in both lingonberries and cranberries exert multiple bioactivities that may be exploited in food development.
Collapse
Affiliation(s)
- Petri Kylli
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chemical synthesis of proanthocyanidins in vitro and their reactions in aging wines. Molecules 2008; 13:3007-32. [PMID: 19052525 PMCID: PMC6245367 DOI: 10.3390/molecules13123007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 11/26/2008] [Accepted: 11/27/2008] [Indexed: 11/22/2022] Open
Abstract
Proanthocyanidins are present in many fruits and plant products like grapes and wine, and contribute to their taste and health benefits. In the past decades of years, substantial progresses has been achieved in the identification of composition and structure of proanthocyanidins, but the debate concerning the existence of an enzymatic or nonenzymatic mechanism for proanthocyanidin condensation still goes on. Substantial attention has been paid to elucidating the potential mechanism of formation by means of biomimetic and chemical synthesis in vitro. The present paper aims at summarizing the research status on chemical synthesis of proanthocyanidins, including non-enzymatic synthesis of proanthocyanidin precursors, chemical synthesis of proanthocyanidins with direct condensation of flavanols and stereoselective synthesis of proanthocyanidins. Proanthocyanidin-involved reactions in aging wines are also reviewed such as direct and indirect reactions among proanthocyanidins, flavanols and anthocyanins. Topics for future research in this field are also put forward in this paper.
Collapse
|