1
|
Lõhmus A, Varjosalo M, Mäkinen K. Protein composition of 6K2-induced membrane structures formed during Potato virus A infection. MOLECULAR PLANT PATHOLOGY 2016; 17:943-58. [PMID: 26574906 PMCID: PMC6638329 DOI: 10.1111/mpp.12341] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 05/13/2023]
Abstract
The definition of the precise molecular composition of membranous replication compartments is a key to understanding the mechanisms of virus multiplication. Here, we set out to investigate the protein composition of the potyviral replication complexes. We purified the potyviral 6K2 protein-induced membranous structures from Potato virus A (PVA)-infected Nicotiana benthamiana plants. For this purpose, the 6K2 protein, which is the main inducer of potyviral membrane rearrangements, was expressed in fusion with an N-terminal Twin-Strep-tag and Cerulean fluorescent protein (SC6K) from the infectious PVA cDNA. A non-tagged Cerulean-6K2 (C6K) virus and the SC6K protein alone in the absence of infection were used as controls. A purification scheme exploiting discontinuous sucrose gradient centrifugation followed by Strep-tag-based affinity chromatography was developed. Both (+)- and (-)-strand PVA RNA and viral protein VPg were co-purified specifically with the affinity tagged PVA-SC6K. The purified samples, which contained individual vesicles and membrane clusters, were subjected to mass spectrometry analysis. Data analysis revealed that many of the detected viral and host proteins were either significantly enriched or fully specifically present in PVA-SC6K samples when compared with the controls. Eight of eleven potyviral proteins were identified with high confidence from the purified membrane structures formed during PVA infection. Ribosomal proteins were identified from the 6K2-induced membranes only in the presence of a replicating virus, reinforcing the tight coupling between replication and translation. A substantial number of proteins associating with chloroplasts and several host proteins previously linked with potyvirus replication complexes were co-purified with PVA-derived SC6K, supporting the conclusion that the host proteins identified in this study may have relevance in PVA replication.
Collapse
Affiliation(s)
- Andres Lõhmus
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, 00014 University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, 00014 University of Helsinki, Finland
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, 00014 University of Helsinki, Finland
| |
Collapse
|
2
|
Pastor-Cantizano N, Montesinos JC, Bernat-Silvestre C, Marcote MJ, Aniento F. p24 family proteins: key players in the regulation of trafficking along the secretory pathway. PROTOPLASMA 2016; 253:967-985. [PMID: 26224213 DOI: 10.1007/s00709-015-0858-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
p24 family proteins have been known for a long time, but their functions have remained elusive. However, they are emerging as essential regulators of protein trafficking along the secretory pathway, influencing the composition, structure, and function of different organelles in the pathway, especially the ER and the Golgi apparatus. In addition, they appear to modulate the transport of specific cargos, including GPI-anchored proteins, G-protein-coupled receptors, or K/HDEL ligands. As a consequence, they have been shown to play specific roles in signaling, development, insulin secretion, and the pathogenesis of Alzheimer's disease. The search of new putative ligands may open the way to discover new functions for this fascinating family of proteins.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Juan Carlos Montesinos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
3
|
Serra-Soriano M, Pallás V, Navarro JA. A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:863-79. [PMID: 24438546 DOI: 10.1111/tpj.12435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 05/19/2023]
Abstract
Viral movement proteins exploit host endomembranes and the cytoskeleton to move within the cell via routes that, in some cases, are dependent on the secretory pathway. For example, melon necrotic spot virus p7B, a type II transmembrane protein, leaves the endoplasmic reticulum (ER) through the COPII-dependent Golgi pathway to reach the plasmodesmata. Here we investigated the sequence requirements and putative mechanisms governing p7B transport through the early secretory pathway. Deletion of either the cytoplasmic N-terminal region (CR) or the luminal C-terminal region (LR) led to ER retention, suggesting that they are both essential for ER export. Through alanine-scanning mutagenesis, we identified residues in the CR and LR that are critical for both ER export and for viral cell-to-cell movement. Within the CR, alanine substitution of aspartic and proline residues in the DSSP β-turn motif (D7 AP10 A) led to movement of discrete structures along the cortical ER in an actin-dependent manner. In contrast, alanine substitution of a lysine residue in the LR (K49 A) resulted in a homogenous ER distribution of the movement protein and inhibition of ER-Golgi traffic. Moreover, the ability of p7B to recruit Sar1 to the ER membrane is lost in the D7 AP10 A mutant, but enhanced in the K49 A mutant. In addition, fluorescence recovery after photobleaching revealed that K49 A but not D7 AP10 A dramatically diminished protein lateral mobility. From these data, we propose a model whereby the LR directs actin-dependent mobility toward the cortical ER, where the cytoplasmic DSSP β-turn favors assembly of COPII vesicles for export of p7B from the ER.
Collapse
Affiliation(s)
- Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València/Consejo Superior de Investigaciones Científicas, Avenida Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | | | | |
Collapse
|
4
|
Abstract
The interface between the endoplasmic reticulum (ER) and the Golgi apparatus is a critical junction in the secretory pathway mediating the transport of both soluble and membrane cargo between the two organelles. Such transport can be bidirectional and is mediated by coated membranes. In this review, we consider the organization and dynamics of this interface in plant cells, the putative structure of which has caused some controversy in the literature, and we speculate on the stages of Golgi biogenesis from the ER and the role of the Golgi and ER on each other's motility.
Collapse
Affiliation(s)
- Chris Hawes
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, UK.
| | | | | | | |
Collapse
|
5
|
Langhans M, Marcote MJ, Pimpl P, Virgili-López G, Robinson DG, Aniento F. In vivo Trafficking and Localization of p24 Proteins in Plant Cells. Traffic 2008; 9:770-85. [DOI: 10.1111/j.1600-0854.2008.00719.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Hummel E, Schmickl R, Hinz G, Hillmer S, Robinson DG. Brefeldin A action and recovery in Chlamydomonas are rapid and involve fusion and fission of Golgi cisternae. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:489-501. [PMID: 17301935 DOI: 10.1055/s-2006-924759] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CHLAMYDOMONAS NOCTIGAMA has a non-motile Golgi apparatus consisting of several Golgi stacks adjacent to transitional ER. These domains are characterized by vesicle-budding profiles and the lack of ribosomes on the side of the ER proximal to the Golgi stacks. Immunogold labelling confirms the presence of COPI-proteins at the periphery of the Golgi stacks, and COPII-proteins at the ER-Golgi interface. After addition of BFA (10 microg/ml) a marked increase in the number of vesicular profiles lying between the ER and the Golgi stacks is seen. Serial sections of cells do not provide any evidence for the existence of tubular connections between the ER and the Golgi stacks, supporting the notion that COPI- but not COPII-vesicle production is affected by BFA. The fusion of COPII-vesicles at the CIS-Golgi apparatus apparently requires the presence of retrograde COPI-vesicles. After 15 min the cisternae of neighbouring Golgi stacks begin to fuse forming "mega-Golgis", which gradually curl before fragmenting into clusters of vesicles and tubules. These are surrounded by the transitional ER on which vesicle-budding profiles are still occasionally visible. Golgi remnants continue to survive for several hours and do not completely disappear. Washing out BFA leads to a very rapid reassembly of Golgi cisternae. At first, clusters of vesicles are seen adjacent to transitional ER, then "mini Golgis" are seen whose cisternae grow in length and number to produce "mega Golgis". These structures then divide by vertical fission to produce Golgi stacks of normal size and morphology roughly 60 min after drug wash-out.
Collapse
Affiliation(s)
- E Hummel
- Department of Cell Biology, Heidelberg Institute for Plant Sciences (HIP), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
7
|
Donohoe BS, Kang BH, Staehelin LA. Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci U S A 2006; 104:163-8. [PMID: 17185411 PMCID: PMC1765428 DOI: 10.1073/pnas.0609818104] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coat protein I (COPI) vesicles arise from Golgi cisternae and mediate the recycling of proteins from the Golgi back to the endoplasmic reticulum (ER) and the transport of Golgi resident proteins between cisternae. In vitro studies have produced evidence for two distinct types of COPI vesicles, but the in vivo sites of operation of these vesicles remain to be established. We have used a combination of electron tomography and immunolabeling techniques to examine Golgi stacks and associated vesicles in the cells of the scale-producing alga Scherffelia dubia and Arabidopsis preserved by high-pressure freezing/freeze-substitution methods. Five structurally distinct types of vesicles were distinguished. In Arabidopsis, COPI and COPII vesicle coat proteins as well as vesicle cargo molecules (mannosidase I and sialyltransferase-yellow fluorescent protein) were identified by immunogold labeling. In both organisms, the COPI-type vesicles were further characterized by a combination of six structural criteria: coat architecture, coat thickness, membrane structure, cargo staining, cisternal origin, and spatial distribution. Using this multiparameter structural approach, we can distinguish two types of COPI vesicles, COPIa and COPIb. COPIa vesicles bud exclusively from cis cisternae and occupy the space between cis cisternae and ER export sites, whereas the COPIb vesicles bud exclusively from medial- and trans-Golgi cisternae and are confined to the space around these latter cisternae. We conclude that COPIa vesicle-mediated recycling to the ER occurs only from cis cisternae, that retrograde transport of Golgi resident proteins by COPIb vesicles is limited to medial and trans cisternae, and that diffusion of periGolgi vesicles is restricted.
Collapse
Affiliation(s)
- Bryon S. Donohoe
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Byung-Ho Kang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
- To whom correspondence should be addressed. E-mail:
| | - L. Andrew Staehelin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|