1
|
Marcano L, Orue I, Gandia D, Gandarias L, Weigand M, Abrudan RM, García-Prieto A, García-Arribas A, Muela A, Fdez-Gubieda ML, Valencia S. Magnetic Anisotropy of Individual Nanomagnets Embedded in Biological Systems Determined by Axi-asymmetric X-ray Transmission Microscopy. ACS NANO 2022; 16:7398-7408. [PMID: 35472296 PMCID: PMC9878725 DOI: 10.1021/acsnano.1c09559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Over the past few years, the use of nanomagnets in biomedical applications has increased. Among others, magnetic nanostructures can be used as diagnostic and therapeutic agents in cardiovascular diseases, to locally destroy cancer cells, to deliver drugs at specific positions, and to guide (and track) stem cells to damaged body locations in regenerative medicine and tissue engineering. All these applications rely on the magnetic properties of the nanomagnets which are mostly determined by their magnetic anisotropy. Despite its importance, the magnetic anisotropy of the individual magnetic nanostructures is unknown. Currently available magnetic sensitive microscopic methods are either limited in spatial resolution or in magnetic field strength or, more relevant, do not allow one to measure magnetic signals of nanomagnets embedded in biological systems. Hence, the use of nanomagnets in biomedical applications must rely on mean values obtained after averaging samples containing thousands of dissimilar entities. Here we present a hybrid experimental/theoretical method capable of working out the magnetic anisotropy constant and the magnetic easy axis of individual magnetic nanostructures embedded in biological systems. The method combines scanning transmission X-ray microscopy using an axi-asymmetric magnetic field with theoretical simulations based on the Stoner-Wohlfarth model. The validity of the method is demonstrated by determining the magnetic anisotropy constant and magnetic easy axis direction of 15 intracellular magnetite nanoparticles (50 nm in size) biosynthesized inside a magnetotactic bacterium.
Collapse
Affiliation(s)
- Lourdes Marcano
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Dpto.
Electricidad y Electrónica, Universidad
del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - Iñaki Orue
- SGIker, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - David Gandia
- BCMaterials, Bld. Martina Casiano third floor, 48940 Leioa, Spain
| | - Lucía Gandarias
- Dpto.
Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - Markus Weigand
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Radu Marius Abrudan
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Ana García-Prieto
- Dpto. Física
Aplicada, Universidad del País Vasco - UPV/EHU, 48013 Bilbao, Spain
| | - Alfredo García-Arribas
- Dpto.
Electricidad y Electrónica, Universidad
del País Vasco - UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Bld. Martina Casiano third floor, 48940 Leioa, Spain
| | - Alicia Muela
- Dpto.
Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - M. Luisa Fdez-Gubieda
- Dpto.
Electricidad y Electrónica, Universidad
del País Vasco - UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Bld. Martina Casiano third floor, 48940 Leioa, Spain
| | - Sergio Valencia
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| |
Collapse
|
2
|
Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria. Sci Rep 2018; 8:7699. [PMID: 29769616 PMCID: PMC5955880 DOI: 10.1038/s41598-018-25972-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Understanding the biological processes enabling magnetotactic bacteria to maintain oriented chains of magnetic iron-bearing nanoparticles called magnetosomes is a major challenge. The study aimed to constrain the role of an external applied magnetic field on the alignment of magnetosome chains in Magnetospirillum magneticum AMB-1 magnetotactic bacteria immobilized within a hydrated silica matrix. A deviation of the chain orientation was evidenced, without significant impact on cell viability, which was preserved after the field was turned-off. Transmission electron microscopy showed that the crystallographic orientation of the nanoparticles within the chains were preserved. Off-axis electron holography evidenced that the change in magnetosome orientation was accompanied by a shift from parallel to anti-parallel interactions between individual nanocrystals. The field-induced destructuration of the chain occurs according to two possible mechanisms: (i) each magnetosome responds individually and reorients in the magnetic field direction and/or (ii) short magnetosome chains deviate in the magnetic field direction. This work enlightens the strong dynamic character of the magnetosome assembly and widens the potentialities of magnetotactic bacteria in bionanotechnology.
Collapse
|
3
|
Pileni MP. Inorganic nanocrystals self ordered in 2D superlattices: how versatile are the physical and chemical properties? Phys Chem Chem Phys 2010; 12:11821-35. [DOI: 10.1039/c0cp00456a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
A comparative study of magnetic properties between whole cells and isolated magnetosomes of Magnetospirillum magneticum AMB-1. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0333-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Alphandéry E, Ding Y, Ngo AT, Wang ZL, Wu LF, Pileni MP. Assemblies of aligned magnetotactic bacteria and extracted magnetosomes: what is the main factor responsible for the magnetic anisotropy? ACS NANO 2009; 3:1539-47. [PMID: 19459692 DOI: 10.1021/nn900289n] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The origin of the magnetic anisotropy is explained in an assembly of aligned magnetic nanoparticles. For that, nanoparticles synthesized biologically by Magnetospirillum magneticum AMB-1 magnetotactic bacteria are used. For the first time, it is possible to differentiate between the two contributions arising from the alignment of the magnetosome easy axes and the strength of the magnetosome dipolar interactions. The magnetic anisotropy is shown to arise mainly from the dipolar interactions between the magnetosomes.
Collapse
Affiliation(s)
- E Alphandéry
- Universite Pierre et Marie-Curie, Laboratoire des materiaux mesoscopiques et nanometriques (LM2N), 4 place Jussieu, Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|