1
|
Rut W, Groborz K, Zhang L, Modrzycka S, Poreba M, Hilgenfeld R, Drag M. Profiling of flaviviral NS2B-NS3 protease specificity provides a structural basis for the development of selective chemical tools that differentiate Dengue from Zika and West Nile viruses. Antiviral Res 2020; 175:104731. [PMID: 32014497 DOI: 10.1016/j.antiviral.2020.104731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) and Dengue virus (DENV) are mosquito-borne pathogenic flaviviruses. The NS2B-NS3 proteases found in these viruses are responsible for polyprotein processing and are therefore considered promising medical targets. Another ortholog of these proteases is found in Zika virus (ZIKV). In this work, we applied a combinatorial chemistry approach - Hybrid Combinatorial Substrate Library (HyCoSuL), to compare the substrate specificity profile at the P4-P1 positions of the NS2B-NS3 proteases found in all three viruses. The obtained data demonstrate that Zika and West Nile virus NS2B-NS3 proteases display highly overlapping substrate specificity in all binding pockets, while the Dengue ortholog has slightly different preferences toward natural and unnatural amino acids at the P2 and P4 positions. We used this information to extract specific peptide sequences recognized by the Dengue NS2B-NS3 protease. Next, we applied this knowledge to design a selective substrate and activity-based probe for the Dengue NS2B-NS3 protease. Our work provides a structural framework for the design of inhibitors, which could be used as a lead structure for drug development efforts.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Katarzyna Groborz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Linlin Zhang
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
2
|
Kouretova J, Hammamy MZ, Epp A, Hardes K, Kallis S, Zhang L, Hilgenfeld R, Bartenschlager R, Steinmetzer T. Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication. J Enzyme Inhib Med Chem 2017; 32:712-721. [PMID: 28385094 PMCID: PMC6445162 DOI: 10.1080/14756366.2017.1306521] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
West Nile virus (WNV) and Dengue virus (DENV) replication depends on the viral NS2B-NS3 protease and the host enzyme furin, which emerged as potential drug targets. Modification of our previously described WNV protease inhibitors by basic phenylalanine analogs provided compounds with reduced potency against the WNV and DENV protease. In a second series, their decarboxylated P1-trans-(4-guanidino)cyclohexylamide was replaced by an arginyl-amide moiety. Compound 4-(guanidinomethyl)-phenylacetyl-Lys-Lys-Arg-NH2 inhibits the NS2B-NS3 protease of WNV with an inhibition constant of 0.11 µM. Due to the similarity in substrate specificity, we have also tested the potency of our previously described multibasic furin inhibitors. Their further modification provided chimeric inhibitors with additional potency against the WNV and DENV proteases. A strong inhibition of WNV and DENV replication in cell culture was observed for the specific furin inhibitors, which reduced virus titers up to 10,000-fold. These studies reveal that potent inhibitors of furin can block the replication of DENV and WNV.
Collapse
Affiliation(s)
- Jenny Kouretova
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany.,b German Center for Infection Research (DZIF) , University of Marburg , Marburg , Germany
| | - M Zouhir Hammamy
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Anton Epp
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Kornelia Hardes
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Stephanie Kallis
- c Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany
| | - Linlin Zhang
- d Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Lübeck , Germany.,e German Center for Infection Research (DZIF) , University of Lübeck , Lübeck , Germany
| | - Rolf Hilgenfeld
- d Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Lübeck , Germany.,e German Center for Infection Research (DZIF) , University of Lübeck , Lübeck , Germany
| | - Ralf Bartenschlager
- c Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany.,f German Center for Infection Research (DZIF) , Heidelberg University , Heidelberg , Germany
| | - Torsten Steinmetzer
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany.,b German Center for Infection Research (DZIF) , University of Marburg , Marburg , Germany
| |
Collapse
|
3
|
Byler KG, Ogungbe IV, Setzer WN. In-silico screening for anti-Zika virus phytochemicals. J Mol Graph Model 2016; 69:78-91. [PMID: 27588363 PMCID: PMC7185537 DOI: 10.1016/j.jmgm.2016.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/23/2016] [Accepted: 08/27/2016] [Indexed: 11/28/2022]
Abstract
Zika virus (ZIKV) is an arbovirus that has infected hundreds of thousands of people and is a rapidly expanding epidemic across Central and South America. ZIKV infection has caused serious, albeit rare, complications including Guillain-Barré syndrome and congenital microcephaly. There are currently no vaccines or antiviral agents to treat or prevent ZIKV infection, but there are several ZIKV non-structural proteins that may serve as promising antiviral drug targets. In this work, we have carried out an in-silico search for potential anti-Zika viral agents from natural sources. We have generated ZIKV protease, methyltransferase, and RNA-dependent RNA polymerase using homology modeling techniques and we have carried out molecular docking analyses of our in-house virtual library of phytochemicals with these protein targets as well as with ZIKV helicase. Overall, 2263 plant-derived secondary metabolites have been docked. Of these, 43 compounds that have drug-like properties have exhibited remarkable docking profiles to one or more of the ZIKV protein targets, and several of these are found in relatively common herbal medicines, suggesting promise for natural and inexpensive antiviral therapy for this emerging tropical disease.
Collapse
Affiliation(s)
- Kendall G Byler
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Ifedayo Victor Ogungbe
- Department of Chemistry & Biochemistry, Jackson State University, Jackson, MS, 39217, USA
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|