1
|
Ravizzoni Dartora D, Flahault A, Pontes CNR, He Y, Deprez A, Cloutier A, Cagnone G, Gaub P, Altit G, Bigras JL, Joyal JS, Mai Luu T, Burelle Y, Nuyt AM. Cardiac Left Ventricle Mitochondrial Dysfunction After Neonatal Exposure to Hyperoxia: Relevance for Cardiomyopathy After Preterm Birth. Hypertension 2021; 79:575-587. [PMID: 34961326 PMCID: PMC8823906 DOI: 10.1161/hypertensionaha.121.17979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Individuals born preterm present left ventricle changes and increased risk of cardiac diseases and heart failure. The pathophysiology of heart disease after preterm birth is incompletely understood. Mitochondria dysfunction is a hallmark of cardiomyopathy resulting in heart failure. We hypothesized that neonatal hyperoxia in rats, a recognized model simulating preterm birth conditions and resulting in oxygen-induced cardiomyopathy, induce left ventricle mitochondrial changes in juvenile rats. We also hypothesized that humanin, a mitochondrial-derived peptide, would be reduced in young adults born preterm.
Collapse
Affiliation(s)
- Daniela Ravizzoni Dartora
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Adrien Flahault
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Carolina N R Pontes
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Universidade Federal de Goias, Brazil (C.N.R.P.)
| | - Ying He
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Alyson Deprez
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Anik Cloutier
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Gaël Cagnone
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Faculty of Medicine, University of Montreal, Quebec, Canada. (G.C., P.G., J.-S.J.)
| | - Perrine Gaub
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Faculty of Medicine, University of Montreal, Quebec, Canada. (G.C., P.G., J.-S.J.)
| | - Gabriel Altit
- Division of Neonatology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada (G.A.)
| | - Jean-Luc Bigras
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Faculty of Medicine, University of Montreal, Quebec, Canada. (G.C., P.G., J.-S.J.)
| | - Thuy Mai Luu
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Yan Burelle
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada (Y.B.)
| | - Anne Monique Nuyt
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| |
Collapse
|
2
|
Vaghjiani V, Cain JE, Lee W, Vaithilingam V, Tuch BE, St John JC. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells. Stem Cells Dev 2017; 26:1505-1519. [PMID: 28756741 DOI: 10.1089/scd.2017.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.
Collapse
Affiliation(s)
- Vijesh Vaghjiani
- 1 Centre for Genetic Diseases, Hudson Institute of Medical Research , Clayton, Australia .,2 Department of Molecular and Translational Science, Monash University , Clayton, Australia
| | - Jason E Cain
- 2 Department of Molecular and Translational Science, Monash University , Clayton, Australia .,3 Centre for Cancer Research, Hudson Institute of Medical Research , Clayton, Australia
| | - William Lee
- 1 Centre for Genetic Diseases, Hudson Institute of Medical Research , Clayton, Australia .,2 Department of Molecular and Translational Science, Monash University , Clayton, Australia
| | - Vijayaganapathy Vaithilingam
- 4 Future Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organisation , North Ryde, Australia
| | - Bernard E Tuch
- 4 Future Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organisation , North Ryde, Australia .,5 School of Biomedical Science, Discipline Physiology, University of Sydney , Sydney, Australia
| | - Justin C St John
- 1 Centre for Genetic Diseases, Hudson Institute of Medical Research , Clayton, Australia .,2 Department of Molecular and Translational Science, Monash University , Clayton, Australia
| |
Collapse
|