1
|
Barad L, Schick R, Zeevi-Levin N, Itskovitz-Eldor J, Binah O. Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair. Can J Cardiol 2014; 30:1279-87. [PMID: 25442431 DOI: 10.1016/j.cjca.2014.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 02/04/2023] Open
Abstract
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have the capacity to differentiate into any specialized cell type, including cardiomyocytes. Therefore, hESC-derived and hiPSC-derived cardiomyocytes (hESC-CMs and hiPSC-CMs, respectively) offer great potential for cardiac regenerative medicine. Unlike some organs, the heart has a limited ability to regenerate, and dysfunction resulting from significant cardiomyocyte loss under pathophysiological conditions, such as myocardial infarction (MI), can lead to heart failure. Unfortunately, for patients with end-stage heart failure, heart transplantation remains the main alternative, and it is insufficient, mainly because of the limited availability of donor organs. Although left ventricular assist devices are progressively entering clinical practice as a bridge to transplantation and even as an optional therapy, cell replacement therapy presents a plausible alternative to donor organ transplantation. During the past decade, multiple candidate cells were proposed for cardiac regeneration, and their mechanisms of action in the myocardium have been explored. The purpose of this article is to critically review the comprehensive research involving the use of hESCs and hiPSCs in MI models and to discuss current controversies, unresolved issues, challenges, and future directions.
Collapse
Affiliation(s)
- Lili Barad
- Department of Physiology, Technion, Haifa, Israel; The Rappaport Family Institute, Technion, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Revital Schick
- Department of Physiology, Technion, Haifa, Israel; The Rappaport Family Institute, Technion, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Naama Zeevi-Levin
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel; The Sohnis and Forman Families Stem Cell Center, Technion, Haifa, Israel
| | - Joseph Itskovitz-Eldor
- The Rappaport Family Institute, Technion, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel; The Sohnis and Forman Families Stem Cell Center, Technion, Haifa, Israel
| | - Ofer Binah
- Department of Physiology, Technion, Haifa, Israel; The Rappaport Family Institute, Technion, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|