1
|
Inhibition of Fam114A1 protects melanocytes from apoptosis through higher RACK1 expression. Aging (Albany NY) 2021; 13:24740-24752. [PMID: 34837888 PMCID: PMC8660612 DOI: 10.18632/aging.203712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Fam114A1 is a gene closely related to the development of nerve cells, melanocytes, and nerve cells that originate from the neural crest of the embryonic ectoderm. Recent studies showed that Fam114A1 has a role in the occurrence of ankylosing myelitis spondylitis and autoimmune enteritis; still, its cellular function remains poorly understood. In this study, we investigated the effect of Fam114A1 on the biological activity of melanocytes. We found that the expression of Fam114A1 in vitiligo melanocytes (MCV-L, MCV-N, PI3V) was higher than that in normal melanocytes, and the biological function of melanocytes was significantly affected when the Fam114A1 gene was silenced. Inhibition of Fam114A1 increased proliferation, migration, and melanin synthesis proteins, decreased apoptosis, while its overexpression reversed this process. Mechanistically, we discovered that RACK1 is a target protein of Fam114A1 and that RACK1 can be negatively regulated by Fam114A1. Further study showed that Fam114A1 inhibition could not protect melanocytes from apoptosis once the expression of RACK1 protein was silenced. In summary, Fam114A1 is an effective regulatory protein for regulating the function of melanocytes. Inhibition Fam114A1 protects melanocytes from apoptosis through increasing RACK1.
Collapse
|
2
|
Liu LP, Li YM, Guo NN, Li S, Ma X, Zhang YX, Gao Y, Huang JL, Zheng DX, Wang LY, Xu H, Hui L, Zheng YW. Therapeutic Potential of Patient iPSC-Derived iMelanocytes in Autologous Transplantation. Cell Rep 2020; 27:455-466.e5. [PMID: 30970249 DOI: 10.1016/j.celrep.2019.03.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 02/02/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a promising melanocyte source as they propagate indefinitely and can be established from patients. However, the in vivo functions of human iPSC-derived melanocytes (hiMels) remain unknown. Here, we generated hiMels from vitiligo patients using a three-dimensional system with enhanced differentiation efficiency, which showed characteristics of human epidermal melanocytes with high sequence similarity and involved in multiple vitiligo-associated signaling pathways. A modified hair follicle reconstitution assay in vivo showed that MITF+PAX3+TYRP1+ hiMels were localized in the mouse hair bulb and epidermis and produced melanin up to 7 weeks after transplantation, whereas MITF+PAX3+TYRP1- hiMelanocyte stem cells integrated into the bulge-subbulge regions. Overall, these data demonstrate the long-term functions of hiMels in vivo to reconstitute pigmented hair follicles and to integrate into normal regions for both mature melanocytes and melanocyte stem cells, providing an alternative source of personalized cellular therapy for depigmentation.
Collapse
Affiliation(s)
- Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Ning-Ning Guo
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Shu Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiaolong Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China
| | - Yi-Xuan Zhang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yimeng Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China
| | - Jian-Ling Huang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Dong-Xu Zheng
- Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Lu-Yuan Wang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Hui Xu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China; Stem Cell and Regenerative Medicine Innovation Academy, Beijing 100101, China.
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan; School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
3
|
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells 2019; 8:cells8101173. [PMID: 31569501 PMCID: PMC6829301 DOI: 10.3390/cells8101173] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.
Collapse
|
4
|
Larribère L, Utikal J. Stem Cell-Derived Models of Neural Crest Are Essential to Understand Melanoma Progression and Therapy Resistance. Front Mol Neurosci 2019; 12:111. [PMID: 31118886 PMCID: PMC6506783 DOI: 10.3389/fnmol.2019.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
During development, neural crest (NC) cells are early precursors of several lineages including melanocytes. Along their differentiation from multipotent cells to mature melanocytes, NC cells will go through successive steps which require either proliferative or motile capacities. For example, they will undergo Epithelial to Mesenchymal Transition (EMT) in order the separate from the neural tube and migrate to their final location in the epidermis (Larribere and Utikal, 2013; Skrypek et al., 2017). The differentiated melanocytes are the cells of origin of melanoma tumors which progress through several stages such as radial growth phase, vertical growth phase, metastasis formation, and often resistance to current therapies. Interestingly, depending on the stage of the disease, melanoma tumor cells share phenotypes with NC cells (proliferative, motile, EMT). These phenotypes are tightly controlled by specific signaling pathways and transcription factors (TFs) which tend to be reactivated during the onset of melanoma. In this review, we summarize first the main TFs which control these common phenotypes. Then, we focus on the existing strategies used to generate human NCs. Finally we discuss how identification and regulation of NC-associated genes provide an additional approach to improving current melanoma targeted therapies.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
5
|
Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application. Stem Cells Int 2016; 2016:7695836. [PMID: 28090209 PMCID: PMC5206454 DOI: 10.1155/2016/7695836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/21/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration.
Collapse
|
6
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|