1
|
Ge L, Huang Y, Ma Q, Wang Y, Yang R, Yang X, Chen Y, Miao Y, Zuo Y. Inhibition of endogenous protease activity and protection of histomorphical integrity during refrigerated storage of grass carp fillets by treatment with natural edible di‐ and tri‐carboxylic acids. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lihong Ge
- College of Life Science Sichuan Normal University Chengdu China
| | - Yuli Huang
- College of Life Science Sichuan Normal University Chengdu China
| | - Qian Ma
- College of Life Science Sichuan Normal University Chengdu China
| | - Yu Wang
- College of Life Science Sichuan Normal University Chengdu China
| | - Rui Yang
- College of Life Science Sichuan Normal University Chengdu China
| | - Xinyu Yang
- College of Life Science Sichuan Normal University Chengdu China
| | - Yan Chen
- College of Life Science Sichuan Normal University Chengdu China
| | - Yuzhi Miao
- College of Life Science Sichuan Normal University Chengdu China
| | - Yong Zuo
- College of Life Science Sichuan Normal University Chengdu China
| |
Collapse
|
2
|
Chávez MN, Morales RA, López-Crisosto C, Roa JC, Allende ML, Lavandero S. Autophagy Activation in Zebrafish Heart Regeneration. Sci Rep 2020; 10:2191. [PMID: 32042056 PMCID: PMC7010704 DOI: 10.1038/s41598-020-59106-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a key role in the maintenance of overall cellular health. While it has been suggested that autophagy may elicit cardioprotective and pro-survival modulating functions, excessive activation of autophagy can also be detrimental. In this regard, the zebrafish is considered a hallmark model for vertebrate regeneration, since contrary to adult mammals, it is able to faithfully regenerate cardiac tissue. Interestingly, the role that autophagy may play in zebrafish heart regeneration has not been studied yet. In the present work, we hypothesize that, in the context of a well-established injury model of ventricular apex resection, autophagy plays a critical role during cardiac regeneration and its regulation can directly affect the zebrafish regenerative potential. We studied the autophagy events occurring upon injury using electron microscopy, in vivo tracking of autophagy markers, and protein analysis. Additionally, using pharmacological tools, we investigated how rapamycin, an inducer of autophagy, affects regeneration relevant processes. Our results show that a tightly regulated autophagic response is triggered upon injury and during the early stages of the regeneration process. Furthermore, treatment with rapamycin caused an impairment in the cardiac regeneration outcome. These findings are reminiscent of the pathophysiological description of an injured human heart and hence put forward the zebrafish as a model to study the poorly understood double-sword effect that autophagy has in cardiac homeostasis.
Collapse
Affiliation(s)
- Myra N Chávez
- Advanced Center for Chronic Diseases (ACCDiS) & Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Rodrigo A Morales
- Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS) & Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel L Allende
- Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS) & Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile. .,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, USA.
| |
Collapse
|