1
|
Suárez-Calvet X, Fernández-Simón E, Piñol-Jurado P, Alonso-Pérez J, Carrasco-Rozas A, Lleixà C, López-Fernández S, Pons G, Soria L, Bigot A, Mouly V, Illa I, Gallardo E, Jaiswal JK, Díaz-Manera J. Isolation of human fibroadipogenic progenitors and satellite cells from frozen muscle biopsies. FASEB J 2021; 35:e21819. [PMID: 34405910 DOI: 10.1096/fj.202100588r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Skeletal muscle contains multiple cell types that work together to maintain tissue homeostasis. Among these, satellite cells (SC) and fibroadipogenic progenitors cells (FAPs) are the two main stem cell pools. Studies of these cells using animal models have shown the importance of interactions between these cells in repair of healthy muscle, and degeneration of dystrophic muscle. Due to the unavailability of fresh patient muscle biopsies, similar analysis of interactions between human FAPs and SCs is limited especially among the muscular dystrophy patients. To address this issue here we describe a method that allows the use of frozen human skeletal muscle biopsies to simultaneously isolate and grow SCs and FAPs from healthy or dystrophic patients. We show that while the purified SCs differentiate into mature myotubes, purified FAPs can differentiate into adipocytes or fibroblasts demonstrating their multipotency. We find that these FAPs can be immortalized and the immortalized FAPs (iFAPs) retain their multipotency. These approaches open the door for carrying out personalized analysis of patient FAPs and interactions with the SCs that lead to muscle loss.
Collapse
Affiliation(s)
- Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Esther Fernández-Simón
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, UK
| | - Patricia Piñol-Jurado
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, UK
| | - Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Ana Carrasco-Rozas
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Susana López-Fernández
- Plastic Surgery Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Gemma Pons
- Plastic Surgery Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Laura Soria
- Orthopaedics and Traumatology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Anne Bigot
- Center for Research in Myology, Sorbonne Université, Inserm, Institut de Myologie, U974, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université, Inserm, Institut de Myologie, U974, Paris, France
| | - Isabel Illa
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jyoti K Jaiswal
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, and Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain.,John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Núñez-Álvarez Y, Hurtado E, Muñoz M, García-Tuñon I, Rech GE, Pluvinet R, Sumoy L, Pendás AM, Peinado MA, Suelves M. Loss of HDAC11 accelerates skeletal muscle regeneration in mice. FEBS J 2021; 288:1201-1223. [PMID: 32602219 DOI: 10.1111/febs.15468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Histone deacetylase 11 (HDAC11) is the latest identified member of the histone deacetylase family of enzymes. It is highly expressed in brain, heart, testis, kidney, and skeletal muscle, although its role in these tissues is poorly understood. Here, we investigate for the first time the consequences of HDAC11 genetic impairment on skeletal muscle regeneration, a process principally dependent on its resident stem cells (satellite cells) in coordination with infiltrating immune cells and stromal cells. Our results show that HDAC11 is dispensable for adult muscle growth and establishment of the satellite cell population, while HDAC11 deficiency advances the regeneration process in response to muscle injury. This effect is not caused by differences in satellite cell activation or proliferation upon injury, but rather by an enhanced capacity of satellite cells to differentiate at early regeneration stages in the absence of HDAC11. Infiltrating HDAC11-deficient macrophages could also contribute to this accelerated muscle regenerative process by prematurely producing high levels of IL-10, a cytokine known to promote myoblast differentiation. Altogether, our results show that HDAC11 depletion advances skeletal muscle regeneration and this finding may have potential implications for designing new strategies for muscle pathologies coursing with chronic damage. DATABASE: Data were deposited in NCBI's Gene Expression Omnibus accessible through GEO Series accession number GSE147423.
Collapse
Affiliation(s)
- Yaiza Núñez-Álvarez
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Erica Hurtado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Mar Muñoz
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Ignacio García-Tuñon
- Institute of Cellular and Molecular Biology of Cancer (CSIC-USAL), Salamanca, Spain
| | - Gabriel E Rech
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Raquel Pluvinet
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Lauro Sumoy
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Alberto M Pendás
- Institute of Cellular and Molecular Biology of Cancer (CSIC-USAL), Salamanca, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Mònica Suelves
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| |
Collapse
|