1
|
Pavlova M, Balaiya V, Flores JC, Ferreyros M, Bush K, Hopkin A, Kogut I, Roop DR, Bilousova G. The Development of an Advanced Model for Multilayer Human Skin Reconstruction In Vivo. Bio Protoc 2024; 14:e4919. [PMID: 38268973 PMCID: PMC10804244 DOI: 10.21769/bioprotoc.4919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Human skin reconstruction on immune-deficient mice has become indispensable for in vivo studies performed in basic research and translational laboratories. Further advancements in making sustainable, prolonged skin equivalents to study new therapeutic interventions rely on reproducible models utilizing patient-derived cells and natural three-dimensional culture conditions mimicking the structure of living skin. Here, we present a novel step-by-step protocol for grafting human skin cells onto immunocompromised mice that requires low starting cell numbers, which is essential when primary patient cells are limited for modeling skin conditions. The core elements of our method are the sequential transplantation of fibroblasts followed by keratinocytes seeded into a fibrin-based hydrogel in a silicone chamber. We optimized the fibrin gel formulation, timing for gel polymerization in vivo, cell culture conditions, and seeding density to make a robust and efficient grafting protocol. Using this approach, we can successfully engraft as few as 1.0 × 106 fresh and 2.0 × 106 frozen-then-thawed keratinocytes per 1.4 cm2 of the wound area. Additionally, it was concluded that a successful layer-by-layer engraftment of skin cells in vivo could be obtained without labor-intensive and costly methodologies such as bioprinting or engineering complex skin equivalents. Key features • Expands upon the conventional skin chamber assay method (Wang et al., 2000) to generate high-quality skin grafts using a minimal number of cultured skin cells. • The proposed approach allows the use of frozen-then-thawed keratinocytes and fibroblasts in surgical procedures. • This system holds promise for evaluating the functionality of skin cells derived from induced pluripotent stem cells and replicating various skin phenotypes. • The entire process, from thawing skin cells to establishing the graft, requires 54 days. Graphical overview.
Collapse
Affiliation(s)
- Maryna Pavlova
- Department of Dermatology, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Velmurugan Balaiya
- Department of Dermatology, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jocelyn C. Flores
- Department of Dermatology, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Ferreyros
- Department of Dermatology, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Igor Kogut
- Department of Dermatology, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis R. Roop
- Department of Dermatology, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ganna Bilousova
- Department of Dermatology, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Chang DF, Court KA, Holgate R, Davis EA, Bush KA, Quick AP, Spiegel AJ, Rahimi M, Cooke JP, Godin B. Telomerase mRNA Enhances Human Skin Engraftment for Wound Healing. Adv Healthc Mater 2024; 13:e2302029. [PMID: 37619534 PMCID: PMC10840696 DOI: 10.1002/adhm.202302029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Deep skin wounds represent a serious condition and frequently require split-thickness skin grafts (STSG) to heal. The application of autologous human-skin-cell-suspension (hSCS) requires less donor skin than STSG without compromising the healing capacity. Impaired function and replicative ability of senescent cutaneous cells in the aging skin affects healing with autologous hSCS. Major determinants of senescence are telomere erosion and DNA damage. Human telomerase reverse transcriptase (hTERT) adds telomeric repeats to the DNA and can protect against DNA damage. Herein, hTERT mRNA lipid nanoparticles (LNP) are proposed and evaluated for enhancing cellular engraftment and proliferation of hSCS. Transfection with optimized hTERT mRNA LNP system enables delivery and expression of mRNA in vitro in keratinocytes, fibroblasts, and in hSCS prepared from donors' skin. Telomerase activity in hSCS is significantly increased. hTERT mRNA LNP enhance the generation of a partial-thickness human skin equivalent in the mouse model, increasing hSCS engraftment (Lamin) and proliferation (Ki67), while reducing cellular senescence (p21) and DNA damage (53BP1).
Collapse
Affiliation(s)
- David F. Chang
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | | | - Rhonda Holgate
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | - Elizabeth A. Davis
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | | | | | - Aldona J. Spiegel
- Center for Breast Restoration, Houston Methodist Institute for Reconstructive Surgery, Houston Methodist Hospital (HMH)
| | - Maham Rahimi
- Center of Cardiovascular Surgery, Institute of Academic Medicine, HMH
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
- Department of Cardiovascular Sciences, Institute of Academic Medicine, HMH
- Center for RNA Therapeutics, IAM, HMH
| | - Biana Godin
- Department of Nanomedicine, IAM, HMRI, Houston, TX, USA
- Center for RNA Therapeutics, IAM, HMH
- Department of Obstetrics and Gynecology, HMH
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College
- Department of Biomedical Engineering, Texas A&M University
| |
Collapse
|