1
|
Sukmak P, Kulworasreth P, Treveeravoot S, Arinno A, Anuwongworavet S, Wachiradejkul W, Kulworasreth P, Teansuk N, Thongnak L, Amonlerdpison D, Inchai J, Jakrachai C, Akrimajirachoote N, Aonbangkhen C, Muanprasat C, Poolsri W, Vaddhanaphuti CS, Pongkorpsakol P. Solanum melongena L. Extract Promotes Intestinal Tight Junction Re-Assembly via SIRT-1-Dependent Mechanisms. Mol Nutr Food Res 2024; 68:e2400230. [PMID: 39086054 DOI: 10.1002/mnfr.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Indexed: 08/02/2024]
Abstract
Tight junction disruption can lead to pathogenesis of various diseases without therapeutic strategy to recover intestinal barrier integrity. The main objective of this study is to demonstrate the effect of Solanum melongena L. extract (SMLE) on intestinal tight junction recovery and its underlying mechanism. Intestinal barrier function is attenuated by Ca2+ depletion. SMLE treatment increased TER value across T84 cell monolayers. Permeability assay reveals that Ca2+ depletion promotes 4-kDa FITC-dextran permeability, but not 70-kDa FITC-dextran. SMLE suppresses the rate of 4-kDa FITC-dextran permeability, indicating that SMLE inhibits paracellular leak pathway permeability. SMLE-mediated TER increase and leak pathway suppression are abolished by neither calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor nor AMP-activated protein kinase (AMPK) inhibitor. Furthermore, mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) inhibitors have no effects on SMLE-mediated TER increase and leak pathway suppression. Interestingly, SMLE is unable to enhance TER value and diminish leak pathway permeability in T84 cell monolayers pre-treated with sirtuin-1 (SIRT-1) inhibitor. Immunofluorescence staining reveals that SMLE enhances re-assembly of tight junction proteins, including occludin and ZO-1 to intercellular space but this effect is abolished by SIRT-1 inhibitor. These data suggest that SMLE promotes intestinal tight junction re-assembly via SIRT-1-dependent manner.
Collapse
Affiliation(s)
- Pichayapa Sukmak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
| | - Purisha Kulworasreth
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Supisara Treveeravoot
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
| | - Apiwan Arinno
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Wanapas Wachiradejkul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Purit Kulworasreth
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Natnicha Teansuk
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
| | - Laongdao Thongnak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Doungporn Amonlerdpison
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur and Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, Thailand
| | - Jakkapong Inchai
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chaiwet Jakrachai
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | | | - Chutima S Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
| |
Collapse
|
2
|
Muscarà C, Speciale A, Molonia MS, Salamone FL, Saija A, Cimino F. Intestinal epithelial differentiation and barrier function is promoted in vitro by a Cynara cardunculus L. leaf extract through AMPK pathway activation. Nat Prod Res 2024:1-11. [PMID: 39058646 DOI: 10.1080/14786419.2024.2384080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Gut epithelial barrier perturbation leads to leaky gut syndrome and permeation of substances activating immune response. Polyphenols can improve intestinal barrier function and represent candidates for preventing development of leaky gut. Herein, we evaluated in vitro the molecular mechanisms involved in the protective effects of a polyphenol-rich extract from leaves of Cynara cardunculus L. (CCLE) on intestinal barrier function and integrity on Caco-2 human epithelial cells. Treatment with CCLE from seeding until complete differentiation improved intestinal function by increasing trans-epithelial electrical resistance (TEER), reducing paracellular permeability to fluorescein, and promoting faster recovery of tight junctions (TJ) assembly in the Ca2+ switch assay. CCLE stimulated epithelial cell differentiation inducing alkaline phosphatase activity and TJ proteins. These CCLE-induced effects were attributed to activation of AMP-activated protein kinase (AMPK) pathway. Our data support the use of Cynara cardunculus L. leaves, an agricultural co-product rich in bioactive polyphenols, for the health of intestinal epithelium.
Collapse
Affiliation(s)
- Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Lucchetti M, Werr G, Johansson S, Barbe L, Grandmougin L, Wilmes P, Tenje M. Integration of multiple flexible electrodes for real-time detection of barrier formation with spatial resolution in a gut-on-chip system. MICROSYSTEMS & NANOENGINEERING 2024; 10:18. [PMID: 38268774 PMCID: PMC10805851 DOI: 10.1038/s41378-023-00640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 01/26/2024]
Abstract
In healthy individuals, the intestinal epithelium forms a tight barrier to prevent gut bacteria from reaching blood circulation. To study the effect of probiotics, dietary compounds and drugs on gut barrier formation and disruption, human gut epithelial and bacterial cells can be cocultured in an in vitro model called the human microbial crosstalk (HuMiX) gut-on-a-chip system. Here, we present the design, fabrication and integration of thin-film electrodes into the HuMiX platform to measure transepithelial electrical resistance (TEER) as a direct readout on barrier tightness in real-time. As various aspects of the HuMiX platform have already been set in their design, such as multiple compressible layers, uneven surfaces and nontransparent materials, a novel fabrication method was developed whereby thin-film metal electrodes were first deposited on flexible substrates and sequentially integrated with the HuMiX system via a transfer-tape approach. Moreover, to measure localized TEER along the cell culture chamber, we integrated multiple electrodes that were connected to an impedance analyzer via a multiplexer. We further developed a dynamic normalization method because the active measurement area depends on the measured TEER levels. The fabrication process and system setup can be applicable to other barrier-on-chip systems. As a proof-of-concept, we measured the barrier formation of a cancerous Caco-2 cell line in real-time, which was mapped at four spatially separated positions along the HuMiX culture area.
Collapse
Affiliation(s)
- Mara Lucchetti
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362 Luxembourg
| | - Gabriel Werr
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Sofia Johansson
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Laurent Barbe
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Léa Grandmougin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362 Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362 Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, L-4362 Luxembourg
| | - Maria Tenje
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| |
Collapse
|
4
|
Mavrogeni ME, Asadpoor M, Judernatz JH, van Ark I, Wösten MMSM, Strijbis K, Pieters RJ, Folkerts G, Braber S. Protective Effects of Alginate and Chitosan Oligosaccharides against Clostridioides difficile Bacteria and Toxin. Toxins (Basel) 2023; 15:586. [PMID: 37888617 PMCID: PMC10610568 DOI: 10.3390/toxins15100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Clostridioides difficile infection is expected to become the most common healthcare-associated infection worldwide. C. difficile-induced pathogenicity is significantly attributed to its enterotoxin, TcdA, which primarily targets Rho-GTPases involved in regulating cytoskeletal and tight junction (TJ) dynamics, thus leading to cytoskeleton breakdown and ultimately increased intestinal permeability. This study investigated whether two non-digestible oligosaccharides (NDOs), alginate (AOS) and chitosan (COS) oligosaccharides, possess antipathogenic and barrier-protective properties against C. difficile bacteria and TcdA toxin, respectively. Both NDOs significantly reduced C. difficile growth, while cell cytotoxicity assays demonstrated that neither COS nor AOS significantly attenuated the TcdA-induced cell death 24 h post-exposure. The challenge of Caco-2 monolayers with increasing TcdA concentrations increased paracellular permeability, as measured by TEER and LY flux assays. In this experimental setup, COS completely abolished, and AOS mitigated, the deleterious effects of TcdA on the monolayer's integrity. These events were not accompanied by alterations in ZO-1 and occludin protein levels; however, immunofluorescence microscopy revealed that both AOS and COS prevented the TcdA-induced occludin mislocalization. Finally, both NDOs accelerated TJ reassembly upon a calcium-switch assay. Overall, this study established the antipathogenic and barrier-protective capacity of AOS and COS against C. difficile and its toxin, TcdA, while revealing their ability to promote TJ reassembly in Caco-2 cells.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jo H Judernatz
- Structural Biochemistry Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Marc M S M Wösten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Karin Strijbis
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Roland J Pieters
- Division of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
5
|
Zhou L, Hao M, Fan X, Lao Z, Li M, Shang E. Effects of Houpo Mahuang Decoction on serum metabolism and TRPV1/Ca 2+/TJs in asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115873. [PMID: 36309114 DOI: 10.1016/j.jep.2022.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Houpo Mahuang Decoction (HPMHD is one of the classic traditional Chinese prescriptions that has been used in the treatment of asthma. The therapeutic effects and mechanism of HPMHD in aggravated asthma remain to be explored, especially from the perspective of metabolomics and Transient Receptor Potential Vanilloid-1 (TRPV1)/Ca2+/Tight junction (TJ) regulation. AIM OF THE STUDY To investigate the therapeutic and metabolic regulatory effects and the underlying mechanism of HPMHD in asthmatic rats. MATERIALS AND METHODS The asthmatic rats were administered with the corresponding HPMHD (at dosages of 5.54, 11.07, 22.14 mg/kg). Then inflammatory cells in peripheral blood and bronchoalveolar lavage fluid (BALF) were counted, the levels of interleukin (IL)-4 and IL-13 in BALF were measured, and the changes in enhanced pause (Penh) and pathological damage of lung tissues were also detected to evaluate the protective effects of HPMHD. The serum metabolic profile of HPMHD in asthmatic rats was explored using Ultra-High-Performance Liquid Chromatography-mass spectrometer (UHPLC-MS), and the regulatory effects on TRPV1 and TJs of HPMHD in asthmatic rats were detected by Western blotting analysis. In vitro, 16HBE cells were stimulated with IL-4 plus SO2 derivatives and then administered HPMHD. The intracellular Ca2+ regulated by TRPV1, and the expression levels of TRPV1 and TJ proteins (TJs) were then detected by calcium imaging and Western blotting. The effects were verified by inhibition of TRPV1 and in short hairpin RNA (shRNA)-mediated TRPV1 silencing cells. RESULTS HPMHD significantly attenuated the airway inflammation of asthmatic rats, and reduced the levels of inflammatory cells in peripheral blood and BALF as well as the levels of IL-4 plus IL-13 in BALF. In addition, the airway hyperresponsiveness and lung pathological damage were alleviated. Serum metabolomic analysis showed that 31 metabolites were differentially expressed among the normal saline-, model-, and HPMHD-treated rats. Pathway enrichment analysis showed that the metabolites were involved in 45 pathways, among which, TJs regulation-relevant pathway was associated with the Ca2+ concentration change mediated by the TRP Vanilloid channel. In vivo and in vitro experiments indicated that HPMHD reduced the concentration of intracellular Ca2+ via suppressing the expression and activation of TRPV1, increased the expression of ZO-1, Occludin, and Claudin-3, and protected the integrity of TJs. CONCLUSION The current study indicates that HPMHD alleviates rat asthma and participates in the regulation of serum metabolism. The anti-asthma effects of HPMHD might be related to the protection of TJs by inhibiting the intracellular Ca2+ concentration via TRPV1.
Collapse
Affiliation(s)
- Liping Zhou
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Mengyang Hao
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Xinsheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing, 210023, Jiangsu Province, China.
| | - Zishan Lao
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Mengwen Li
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Erxin Shang
- Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
6
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
7
|
Sutton KM, Orr B, Hope J, Jensen SR, Vervelde L. Establishment of bovine 3D enteroid-derived 2D monolayers. Vet Res 2022; 53:15. [PMID: 35236416 PMCID: PMC8889782 DOI: 10.1186/s13567-022-01033-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/03/2022] [Indexed: 12/28/2022] Open
Abstract
Three-dimensional (3D) intestinal enteroids are powerful in vitro models for studying intestinal biology. However, due to their closed structure direct access to the apical surface is impeded, limiting high-throughput applications of exogenous compounds and pathogens. In this study, we describe a method for generating confluent 2D enteroids from single-cell suspensions of enzymatically-dissociated ileum-derived bovine 3D enteroids. Confluent monolayers were first achieved using IntestiCult media but to establish a defined, cost-effective culture media, we also developed a bovine enteroid monolayer (BEM) medium. The monolayers cultured in BEM media proliferated extensively and formed confluent cell layers on both Matrigel-coated plastic plates and transwell inserts by day 3 of culture. The 2D enteroids maintained the epithelial cell lineages found in 3D enteroids and ileum tissue. In addition, the monolayers formed a functional epithelial barrier based on the presence of the adherens and tight junction proteins, E-cadherin and ZO-1, and electrical resistance across the monolayer was measured from day 3 and maintained for up to 7 days in culture. The method described here will provide a useful model to study bovine epithelial cell biology with ease of access to the apical surface of epithelial cells and has potential to investigate host-pathogen interactions and screen bioactive compounds.
Collapse
Affiliation(s)
- Kate M Sutton
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Brigid Orr
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jayne Hope
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Stina R Jensen
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
8
|
Orr B, Sutton K, Christian S, Nash T, Niemann H, Hansen LL, McGrew MJ, Jensen SR, Vervelde L. Novel chicken two-dimensional intestinal model comprising all key epithelial cell types and a mesenchymal sub-layer. Vet Res 2021; 52:142. [PMID: 34819162 PMCID: PMC8611946 DOI: 10.1186/s13567-021-01010-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium plays a variety of roles including providing an effective physical barrier and innate immune protection against infection. Two-dimensional models of the intestinal epithelium, 2D enteroids, are a valuable resource to investigate intestinal cell biology and innate immune functions and are suitable for high throughput studies of paracellular transport and epithelial integrity. We have developed a chicken 2D enteroid model that recapitulates all major differentiated cell lineages, including enterocytes, Paneth cells, Goblet cells, enteroendocrine cells and leukocytes, and self-organises into an epithelial and mesenchymal sub-layer. Functional studies demonstrated the 2D enteroids formed a tight cell layer with minimal paracellular flux and a robust epithelial integrity, which was maintained or rescued following damage. The 2D enteroids were also able to demonstrate appropriate innate immune responses following exposure to bacterial endotoxins, from Salmonella enterica serotype Typhimurium and Bacillus subtilis. Frozen 2D enteroids cells when thawed were comparable to freshly isolated cells. The chicken 2D enteroids provide a useful ex vivo model to study intestinal cell biology and innate immune function, and have potential uses in screening of nutritional supplements, pharmaceuticals, and bioactive compounds.
Collapse
Affiliation(s)
- Brigid Orr
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Kate Sutton
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Sonja Christian
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Tessa Nash
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Helle Niemann
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Lone Lind Hansen
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Mike J McGrew
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | | | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK.
| |
Collapse
|