1
|
Roy S, Ben-Hur A. Protein quality assessment with a loss function designed for high-quality decoys. FRONTIERS IN BIOINFORMATICS 2023; 3:1198218. [PMID: 37915563 PMCID: PMC10616882 DOI: 10.3389/fbinf.2023.1198218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Motivation: The prediction of a protein 3D structure is essential for understanding protein function, drug discovery, and disease mechanisms; with the advent of methods like AlphaFold that are capable of producing very high-quality decoys, ensuring the quality of those decoys can provide further confidence in the accuracy of their predictions. Results: In this work, we describe Qϵ, a graph convolutional network (GCN) that utilizes a minimal set of atom and residue features as inputs to predict the global distance test total score (GDTTS) and local distance difference test (lDDT) score of a decoy. To improve the model's performance, we introduce a novel loss function based on the ϵ-insensitive loss function used for SVM regression. This loss function is specifically designed for evaluating the characteristics of the quality assessment problem and provides predictions with improved accuracy over standard loss functions used for this task. Despite using only a minimal set of features, it matches the performance of recent state-of-the-art methods like DeepUMQA. Availability: The code for Qϵ is available at https://github.com/soumyadip1997/qepsilon.
Collapse
Affiliation(s)
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Zaman AB, Inan TT, De Jong K, Shehu A. Adaptive Stochastic Optimization to Improve Protein Conformation Sampling. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2759-2771. [PMID: 34882562 DOI: 10.1109/tcbb.2021.3134103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have long known that characterizing protein structures structure is key to understanding protein function. Computational approaches have largely addressed a narrow formulation of the problem, seeking to compute one native structure from an amino-acid sequence. Now AlphaFold2 is shown to be able to reveal a high-quality native structure for many proteins. However, researchers over the years have argued for broadening our view to account for the multiplicity of native structures. We now know that many protein molecules switch between different structures to regulate interactions with molecular partners in the cell. Elucidating such structures de novo is exceptionally difficult, as it requires exploration of possibly a very large structure space in search of competing, near-optimal structures. Here we report on a novel stochastic optimization method capable of revealing very different structures for a given protein from knowledge of its amino-acid sequence. The method leverages evolutionary search techniques and adapts its exploration of the search space to balance between exploration and exploitation in the presence of a computational budget. In addition to demonstrating the utility of this method for identifying multiple native structures, we additionally provide a benchmark dataset for researchers to continue work on this problem.
Collapse
|
3
|
Xia YH, Peng CX, Zhou XG, Zhang GJ. A Sequential Niche Multimodal Conformational Sampling Algorithm for Protein Structure Prediction. Bioinformatics 2021; 37:4357-4365. [PMID: 34245242 DOI: 10.1093/bioinformatics/btab500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Massive local minima on the protein energy landscape often cause traditional conformational sampling algorithms to be easily trapped in local basin regions, because they find it difficult to overcome high-energy barriers. Also, the lowest energy conformation may not correspond to the native structure due to the inaccuracy of energy models. This study investigates whether these two problems can be alleviated by a sequential niche technique without loss of accuracy. RESULTS A sequential niche multimodal conformational sampling algorithm for protein structure prediction (SNfold) is proposed in this study. In SNfold, a derating function is designed based on the knowledge learned from the previous sampling and used to construct a series of sampling-guided energy functions. These functions then help the sampling algorithm overcome high-energy barriers and avoid the re-sampling of the explored regions. In inaccurate protein energy models, the high-energy conformation that may correspond to the native structure can be sampled with successively updated sampling-guided energy functions. The proposed SNfold is tested on 300 benchmark proteins, 24 CASP13 and 19 CASP14 FM targets. Results show that SNfold correctly folds (TM-score ≥ 0.5) 231 out of 300 proteins. In particular, compared with Rosetta restrained by distance (Rosetta-dist), SNfold achieves higher average TM-score and improves the sampling efficiency by more than 100 times. On several CASP FM targets, SNfold also shows good performance compared with four state-of-the-art servers in CASP. As a plug-in conformational sampling algorithm, SNfold can be extended to other protein structure prediction methods. AVAILABILITY The source code and executable versions are freely available at https://github.com/iobio-zjut/SNfold. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yu-Hao Xia
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Chun-Xiang Peng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xiao-Gen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| |
Collapse
|
4
|
Akhter N, Chennupati G, Djidjev H, Shehu A. Decoy selection for protein structure prediction via extreme gradient boosting and ranking. BMC Bioinformatics 2020; 21:189. [PMID: 33297949 PMCID: PMC7724862 DOI: 10.1186/s12859-020-3523-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Identifying one or more biologically-active/native decoys from millions of non-native decoys is one of the major challenges in computational structural biology. The extreme lack of balance in positive and negative samples (native and non-native decoys) in a decoy set makes the problem even more complicated. Consensus methods show varied success in handling the challenge of decoy selection despite some issues associated with clustering large decoy sets and decoy sets that do not show much structural similarity. Recent investigations into energy landscape-based decoy selection approaches show promises. However, lack of generalization over varied test cases remains a bottleneck for these methods. Results We propose a novel decoy selection method, ML-Select, a machine learning framework that exploits the energy landscape associated with the structure space probed through a template-free decoy generation. The proposed method outperforms both clustering and energy ranking-based methods, all the while consistently offering better performance on varied test-cases. Moreover, ML-Select shows promising results even for the decoy sets consisting of mostly low-quality decoys. Conclusions ML-Select is a useful method for decoy selection. This work suggests further research in finding more effective ways to adopt machine learning frameworks in achieving robust performance for decoy selection in template-free protein structure prediction.
Collapse
Affiliation(s)
- Nasrin Akhter
- Department of Computer Science, George Mason University, Fairfax, 22030, VA, USA
| | - Gopinath Chennupati
- Information Sciences (CCS-3) Group, Los Alamos National Laboratory, Bikini At al Rd., Los Alamos, 87545, USA.
| | - Hristo Djidjev
- Information Sciences (CCS-3) Group, Los Alamos National Laboratory, Bikini At al Rd., Los Alamos, 87545, USA
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, 22030, VA, USA.,Department of Bioengineering, George Mason University, Fairfax, 22030, VA, USA.,School of Systems Biology, George Mason University, Manassas, 20110, VA, USA
| |
Collapse
|
5
|
Zaman AB, Shehu A. Building maps of protein structure spaces in template-free protein structure prediction. J Bioinform Comput Biol 2020; 17:1940013. [DOI: 10.1142/s0219720019400134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An important goal in template-free protein structure prediction is how to control the quality of computed tertiary structures of a target amino-acid sequence. Despite great advances in algorithmic research, given the size, dimensionality, and inherent characteristics of the protein structure space, this task remains exceptionally challenging. It is current practice to aim to generate as many structures as can be afforded so as to increase the likelihood that some of them will reside near the sought but unknown biologically-active/native structure. When operating within a given computational budget, this is impractical and uninformed by any metrics of interest. In this paper, we propose instead to equip algorithms that generate tertiary structures, also known as decoy generation algorithms, with memory of the protein structure space that they explore. Specifically, we propose an evolving, granularity-controllable map of the protein structure space that makes use of low-dimensional representations of protein structures. Evaluations on diverse target sequences that include recent hard CASP targets show that drastic reductions in storage can be made without sacrificing decoy quality. The presented results make the case that integrating a map of the protein structure space is a promising mechanism to enhance decoy generation algorithms in template-free protein structure prediction.
Collapse
Affiliation(s)
- Ahmed Bin Zaman
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
6
|
Akhter N, Hassan L, Rajabi Z, Barbará D, Shehu A. Learning Organizations of Protein Energy Landscapes: An Application on Decoy Selection in Template-Free Protein Structure Prediction. Methods Mol Biol 2019; 1958:147-171. [PMID: 30945218 DOI: 10.1007/978-1-4939-9161-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The protein energy landscape, which lifts the protein structure space by associating energies with structures, has been useful in improving our understanding of the relationship between structure, dynamics, and function. Currently, however, it is challenging to automatically extract and utilize the underlying organization of an energy landscape to the link structural states it houses to biological activity. In this chapter, we first report on two computational approaches that extract such an organization, one that ignores energies and operates directly in the structure space and another that operates on the energy landscape associated with the structure space. We then describe two complementary approaches, one based on unsupervised learning and another based on supervised learning. Both approaches utilize the extracted organization to address the problem of decoy selection in template-free protein structure prediction. The presented results make the case that learning organizations of protein energy landscapes advances our ability to link structures to biological activity.
Collapse
Affiliation(s)
- Nasrin Akhter
- Department of Computer Science, George Mason University, Fairfax, VA, USA
| | - Liban Hassan
- Department of Computer Science, George Mason University, Fairfax, VA, USA
| | - Zahra Rajabi
- Department of Computer Science, George Mason University, Fairfax, VA, USA
| | - Daniel Barbará
- Department of Computer Science, George Mason University, Fairfax, VA, USA
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
7
|
Zaman AB, Shehu A. Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction. BMC Bioinformatics 2019; 20:211. [PMID: 31023237 PMCID: PMC6485169 DOI: 10.1186/s12859-019-2794-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/04/2019] [Indexed: 12/05/2022] Open
Abstract
Background Computational approaches for the determination of biologically-active/native three-dimensional structures of proteins with novel sequences have to handle several challenges. The (conformation) space of possible three-dimensional spatial arrangements of the chain of amino acids that constitute a protein molecule is vast and high-dimensional. Exploration of the conformation spaces is performed in a sampling-based manner and is biased by the internal energy that sums atomic interactions. Even state-of-the-art energy functions that quantify such interactions are inherently inaccurate and associate with protein conformation spaces overly rugged energy surfaces riddled with artifact local minima. The response to these challenges in template-free protein structure prediction is to generate large numbers of low-energy conformations (also referred to as decoys) as a way of increasing the likelihood of having a diverse decoy dataset that covers a sufficient number of local minima possibly housing near-native conformations. Results In this paper we pursue a complementary approach and propose to directly control the diversity of generated decoys. Inspired by hard optimization problems in high-dimensional and non-linear variable spaces, we propose that conformation sampling for decoy generation is more naturally framed as a multi-objective optimization problem. We demonstrate that mechanisms inherent to evolutionary search techniques facilitate such framing and allow balancing multiple objectives in protein conformation sampling. We showcase here an operationalization of this idea via a novel evolutionary algorithm that has high exploration capability and is also able to access lower-energy regions of the energy landscape of a given protein with similar or better proximity to the known native structure than several state-of-the-art decoy generation algorithms. Conclusions The presented results constitute a promising research direction in improving decoy generation for template-free protein structure prediction with regards to balancing of multiple conflicting objectives under an optimization framework. Future work will consider additional optimization objectives and variants of improvement and selection operators to apportion a fixed computational budget. Of particular interest are directions of research that attenuate dependence on protein energy models.
Collapse
Affiliation(s)
- Ahmed Bin Zaman
- Department of Computer Science, George Mason University, Fairfax, 22030, VA, USA
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, 22030, VA, USA.,Department of Bioengineering, George Mason University, Fairfax, 22030, VA, USA.,School of Systems Biology, George Mason University, Manassas, 20110, VA, USA
| |
Collapse
|
8
|
Sapin E, De Jong KA, Shehu A. From Optimization to Mapping: An Evolutionary Algorithm for Protein Energy Landscapes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:719-731. [PMID: 28113951 DOI: 10.1109/tcbb.2016.2628745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stochastic search is often the only viable option to address complex optimization problems. Recently, evolutionary algorithms have been shown to handle challenging continuous optimization problems related to protein structure modeling. Building on recent work in our laboratories, we propose an evolutionary algorithm for efficiently mapping the multi-basin energy landscapes of dynamic proteins that switch between thermodynamically stable or semi-stable structural states to regulate their biological activity in the cell. The proposed algorithm balances computational resources between exploration and exploitation of the nonlinear, multimodal landscapes that characterize multi-state proteins via a novel combination of global and local search to generate a dynamically-updated, information-rich map of a protein's energy landscape. This new mapping-oriented EA is applied to several dynamic proteins and their disease-implicated variants to illustrate its ability to map complex energy landscapes in a computationally feasible manner. We further show that, given the availability of such maps, comparison between the maps of wildtype and variants of a protein allows for the formulation of a structural and thermodynamic basis for the impact of sequence mutations on dysfunction that may prove useful in guiding further wet-laboratory investigations of dysfunction and molecular interventions.
Collapse
|