1
|
Tessarollo NG, Domingues ACM, Antunes F, da Luz JCDS, Rodrigues OA, Cerqueira OLD, Strauss BE. Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy. Cancers (Basel) 2021; 13:1863. [PMID: 33919679 PMCID: PMC8069790 DOI: 10.3390/cancers13081863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent preclinical and clinical studies have used viral vectors in gene therapy research, especially nonreplicating adenovirus encoding strategic therapeutic genes for cancer treatment. Adenoviruses were the first DNA viruses to go into therapeutic development, mainly due to well-known biological features: stability in vivo, ease of manufacture, and efficient gene delivery to dividing and nondividing cells. However, there are some limitations for gene therapy using adenoviral vectors, such as nonspecific transduction of normal cells and liver sequestration and neutralization by antibodies, especially when administered systemically. On the other hand, adenoviral vectors are amenable to strategies for the modification of their biological structures, including genetic manipulation of viral proteins, pseudotyping, and conjugation with polymers or biological membranes. Such modifications provide greater specificity to the target cell and better safety in systemic administration; thus, a reduction of antiviral host responses would favor the use of adenoviral vectors in cancer immunotherapy. In this review, we describe the structural and molecular features of nonreplicating adenoviral vectors, the current limitations to their use, and strategies to modify adenoviral tropism, highlighting the approaches that may allow for the systemic administration of gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo 01246-000, Brazil; (N.G.T.); (A.C.M.D.); (F.A.); (J.C.d.S.d.L.); (O.A.R.); (O.L.D.C.)
| |
Collapse
|
2
|
Hutchenreuther J, Leask A. Why target the tumor stroma in melanoma? J Cell Commun Signal 2017; 12:113-118. [PMID: 29110248 DOI: 10.1007/s12079-017-0419-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022] Open
Abstract
Melanoma metastasis is fatal. Melanoma cells are often characterized by an activated extracellular signal-regulated kinase (ERK) pathway downstream of mutations in BRAF. Therapies targeting these BRAF mutations are useful for a while; however, patients ultimately develop resistance to these therapies. Recent evidence suggests that this resistance occurs when tumor cells leave their microenvironment and migrate on a stiff, activated tumor stroma; that is, this resistance is linked to the presence of an extracellular matrix reminiscent of a fibrotic micronvironment. These data suggest that agents targeting fibrosis might be used to treat melanoma. We therefore discuss what is known about the tumor stroma in melanoma. An emergent target, CCN2 (CTGF), that is required for fibrosis, may also be a good target for drug-resistant melanoma. Intriguingly, anti-CCN2 antibodies are currently under clinical development.
Collapse
Affiliation(s)
- James Hutchenreuther
- Departments of Physiology and Pharamacology and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Andrew Leask
- Departments of Physiology and Pharamacology and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
3
|
van Dinther D, Stolk DA, van de Ven R, van Kooyk Y, de Gruijl TD, den Haan JMM. Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines. J Leukoc Biol 2017; 102:1017-1034. [PMID: 28729358 PMCID: PMC5597514 DOI: 10.1189/jlb.5mr0217-059rr] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
There is a growing understanding of why certain patients do or do not respond to checkpoint inhibition therapy. This opens new opportunities to reconsider and redevelop vaccine strategies to prime an anticancer immune response. Combination of such vaccines with checkpoint inhibitors will both provide the fuel and release the brake for an efficient anticancer response. Here, we discuss vaccine strategies that use C-type lectin receptor (CLR) targeting of APCs, such as dendritic cells and macrophages. APCs are a necessity for the priming of antigen-specific cytotoxic and helper T cells. Because CLRs are natural carbohydrate-recognition receptors highly expressed by multiple subsets of APCs and involved in uptake and processing of Ags for presentation, these receptors seem particularly interesting for targeting purposes.
Collapse
Affiliation(s)
- Dieke van Dinther
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Dorian A Stolk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Rieneke van de Ven
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| |
Collapse
|
4
|
Deformable Nanovesicles Synthesized through an Adaptable Microfluidic Platform for Enhanced Localized Transdermal Drug Delivery. JOURNAL OF DRUG DELIVERY 2017; 2017:4759839. [PMID: 28480080 PMCID: PMC5396447 DOI: 10.1155/2017/4759839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/13/2017] [Indexed: 12/29/2022]
Abstract
Phospholipid-based deformable nanovesicles (DNVs) that have flexibility in shape offer an adaptable and facile method to encapsulate diverse classes of therapeutics and facilitate localized transdermal delivery while minimizing systemic exposure. Here we report the use of a microfluidic reactor for the synthesis of DNVs and show that alteration of input parameters such as flow speeds as well as molar and flow rate ratios increases entrapment efficiency of drugs and allows fine-tuning of DNV size, elasticity, and surface charge. To determine the ability of DNV-encapsulated drug to be delivered transdermally to a local site, we synthesized, characterized, and tested DNVs carrying the fluorescently labeled hydrophilic bisphosphonate drug AF-647 zoledronate (AF647-Zol). AF647-Zol DNVs were lyophilized, resuspended, and applied topically as a paste to the calvarial skin of mice. High-resolution fluorescent imaging and confocal microscopy revealed significant increase of encapsulated payload delivery to the target tissue-cranial bone-by DNVs as compared to nondeformable nanovesicles (NVs) or aqueous drug solutions. Interestingly, NV delivery was not superior to aqueous drug solution. Our studies show that microfluidic reactor-synthesized DNVs can be produced in good yield, with high encapsulation efficiency, reproducibility, and stability after storage, and represent a useful vehicle for localized transdermal drug delivery.
Collapse
|
5
|
Ruben JM, Bontkes HJ, Westers TM, Hooijberg E, Ossenkoppele GJ, van de Loosdrecht AA, de Gruijl TD. In situ loading of skin dendritic cells with apoptotic bleb-derived antigens for the induction of tumor-directed immunity. Oncoimmunology 2014; 3:e946360. [PMID: 25610730 DOI: 10.4161/21624011.2014.946360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
The generation and loading of dendritic cells (DC) ex-vivo for tumor vaccination purposes is laborious and costly. Direct intradermal (i.d.) administration of tumor-associated antigens could be an attractive alternative approach, provided that efficient uptake and cross-presentation by appropriately activated skin DCs can be achieved. Here, we compare the efficiency of i.d. delivery of relatively small apoptotic blebs (diameter ∼0.1-1 μm) derived from MART-1 transduced acute myeloid leukemia (AML) HL60 cells, to that of larger apoptotic cell remnants (ACR; 2-10 μm) in a physiologically highly relevant human skin explant model. Injection of either fluorescently-labelled ACRs or blebs alone did not affect the number or distribution of migrated DC subsets from skin biopsies after 48 hours, but resulted in a general up-regulation of the co-stimulatory molecules CD83 and CD86 on skin DCs that had ingested apoptotic material. We have previously shown that i.d. administration of GM-CSF and IL-4 resulted in preferential migration of a mature and highly T cell-stimulatory CD11hiCD1a+CD14- dermal DC subset. Here, we found that co-injection of GM-CSF and IL-4 together with either ACRs or blebs resulted in uptake efficiencies within this dermal DC subset of 7.6% (±6.1%) and 19.1% (±15.9%), respectively, thus revealing a significantly higher uptake frequency of blebs (P < 0.02). Intradermal delivery of tumor-derived blebs did not affect the T-cell priming and TH-skewing abilities of migratory skin DC. Nevertheless, in contrast to i.d. administration of ACR, the injection of blebs lead to effective cross-presentation of MART-1 to specific CD8+ effector T cells. We conclude that apoptotic bleb-based vaccines delivered through the skin may offer an attractive, and broadly applicable, cancer immunotherapy.
Collapse
Key Words
- 4/GM, IL-4 and GM-CSF
- ACR, apoptotic cell remnant
- AML, acute myeloid leukemia
- CFSE, carboxyfluorescein succinimidyl ester
- DC, dendritic cell
- DDC, dermal DC
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HLA, human leukocyte antigen
- HSCT, hematopoietic stem cell transplantation
- IFN, interferon
- IL, interleukin
- Ig, immune globulin
- LC, Langerhans cell
- LN, lymph node
- MART-1/melan-A, melanoma antigen recognized by T cell 1
- MLR, mixed leukocyte reaction
- MoDC, monocyte-derived dendritic cell
- TAA, tumor-associated antigen
- TH, T Helper
- TLR, Toll-like receptor
- TNFα, tumor necrosis factor α
- apoptotic cells
- blebs
- cross-presentation
- dendritic cells
- dermis
- i.d., intradermal
- phagocytosis
- skin
Collapse
Affiliation(s)
- Jurjen M Ruben
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands ; Department of Pathology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| |
Collapse
|
6
|
van de Ven R, Lindenberg JJ, Oosterhoff D, de Gruijl TD. Dendritic Cell Plasticity in Tumor-Conditioned Skin: CD14(+) Cells at the Cross-Roads of Immune Activation and Suppression. Front Immunol 2013; 4:403. [PMID: 24324467 PMCID: PMC3839226 DOI: 10.3389/fimmu.2013.00403] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022] Open
Abstract
Tumors abuse myeloid plasticity to re-direct dendritic cell (DC) differentiation from T cell stimulatory subsets to immune-suppressive subsets that can interfere with anti-tumor immunity. Lined by a dense network of easily accessible DC the skin is a preferred site for the delivery of DC-targeted vaccines. Various groups have recently been focusing on functional aspects of DC subsets in the skin and how these may be affected by tumor-derived suppressive factors. IL-6, Prostaglandin-E2, and IL-10 were identified as factors in cultures of primary human tumors responsible for the inhibited development and activation of skin DC as well as monocyte-derived DC. IL-10 was found to be uniquely able to convert fully developed DC to immature macrophage-like cells with functional M2 characteristics in a physiologically highly relevant skin explant model in which the phenotypic and functional traits of “crawl-out” DC were studied. Mostly from mouse studies, the JAK2/STAT3 signaling pathway has emerged as a “master switch” of tumor-induced immune suppression. Our lab has additionally identified p38-MAPK as an important signaling element in human DC suppression, and recently validated it as such in ex vivo cultures of single-cell suspensions from melanoma metastases. Through the identification of molecular mechanisms and signaling events that drive myeloid immune suppression in human tumors, more effective DC-targeted cancer vaccines may be designed.
Collapse
Affiliation(s)
- Rieneke van de Ven
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands ; Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center at the Earle A. Chiles Research Institute, Providence Cancer Center , Portland, OR , USA
| | | | | | | |
Collapse
|
7
|
Lindenberg JJ, Oosterhoff D, Sombroek CC, Lougheed SM, Hooijberg E, Stam AGM, Santegoets SJAM, Tijssen HJ, Buter J, Pinedo HM, van den Eertwegh AJM, Scheper RJ, Koenen HJPM, van de Ven R, de Gruijl TD. IL-10 conditioning of human skin affects the distribution of migratory dendritic cell subsets and functional T cell differentiation. PLoS One 2013; 8:e70237. [PMID: 23875023 PMCID: PMC3715492 DOI: 10.1371/journal.pone.0070237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 06/19/2013] [Indexed: 12/24/2022] Open
Abstract
In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14(+)CD141(+)DC-SIGN(+) DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a(+) subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8(+) T cells, migration of immature CD14(+) DDC was accompanied by increased release of IL-10, poor expansion of CD4(+) and CD8(+) T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance.
Collapse
Affiliation(s)
- Jelle J. Lindenberg
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | - Dinja Oosterhoff
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | - Claudia C. Sombroek
- Department of Pathology, VU University medical center, Amsterdam, The Netherlands
| | - Sinéad M. Lougheed
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, VU University medical center, Amsterdam, The Netherlands
| | - Anita G. M. Stam
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
- Department of Pathology, VU University medical center, Amsterdam, The Netherlands
| | | | - Henk J. Tijssen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan Buter
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | - Herbert M. Pinedo
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | | | - Rik J. Scheper
- Department of Pathology, VU University medical center, Amsterdam, The Netherlands
| | - Hans J. P. M. Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rieneke van de Ven
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Hangalapura BN, Timares L, Oosterhoff D, Scheper RJ, Curiel DT, de Gruijl TD. CD40-targeted adenoviral cancer vaccines: the long and winding road to the clinic. J Gene Med 2012; 14:416-27. [PMID: 22228547 DOI: 10.1002/jgm.1648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The ability of dendritic cells (DCs) to orchestrate innate and adaptive immune responses has been exploited to develop potent anti-cancer immunotherapies. Recent clinical trials exploring the efficacy of ex vivo modified autologous DC-based vaccines have reported some promising results. However, in vitro generation of autologous DCs for clinical administration, their loading with tumor associated antigens (TAAs) and their activation, is laborious and expensive, and, as a result of inter-individual variability in the personalized vaccines, remains poorly standardized. An attractive alternative approach is to load resident DCs in vivo by targeted delivery of TAAs, using viral vectors and activating them simultaneously. To this end, we have constructed genetically-modified adenoviral (Ad) vectors and bispecific adaptor molecules to retarget Ad vectors encoding TAAs to the CD40 receptor on DCs. Pre-clinical human and murine studies conducted so far have clearly demonstrated the suitability of a 'two-component' (i.e. Ad and adaptor molecule) configuration for targeted modification of DCs in vivo for cancer immunotherapy. This review summarizes recent progress in the development of CD40-targeted Ad-based cancer vaccines and highlights pre-clinical issues in the clinical translation of this approach.
Collapse
Affiliation(s)
- Basav N Hangalapura
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
The role of sugars in dendritic cell trafficking. Ann Biomed Eng 2011; 40:777-89. [PMID: 22045510 DOI: 10.1007/s10439-011-0448-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/18/2011] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) are crucial components of the immune response, strategically positioned as immune sentinels. Complex trafficking and accurate positioning of DCs are indispensable for both immunity and tolerance. This is particularly evident for their therapeutic application where an unmet clinical need exists for DCs with improved migratory capacity upon adoptive transfer into patients. One critical step that directs the trafficking of DCs throughout the body is their egress from the vasculature, starting with their adhesive interactions with vascular endothelium under shear flow. Both tethering and rolling rely on interactions mediated by specific glycans attached to glycoproteins and glycolipids present on the DC surface. In DCs, surface glycosylation, including the expression of selectin ligands, changes significantly depending on the local microenvironment and the functional state of the cells. These changes have been documented and have potential implications in important cell functions such as migration. In this article, we review the glycobiological aspects in the context of DC interaction with endothelium, and offer insights on how it can be applied to modulate DC applicability in therapy.
Collapse
|