1
|
Berzosa M, Nemeskalova A, Calvo A, Quincoces G, Collantes M, Pareja F, Gamazo C, Irache JM. Oral Immunogenicity of Enterotoxigenic Escherichia coli Outer Membrane Vesicles Encapsulated into Zein Nanoparticles Coated with a Gantrez ® AN-Mannosamine Polymer Conjugate. Pharmaceutics 2022; 14:123. [PMID: 35057017 PMCID: PMC8780369 DOI: 10.3390/pharmaceutics14010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) represents a major cause of morbidity and mortality in the human population. In particular, ETEC infections affect children under the age of five from low-middle income countries. However, there is no licensed vaccine against this pathogen. ETEC vaccine development is challenging since this pathotype expresses a wide variety of antigenically diverse virulence factors whose genes can be modified due to ETEC genetic plasticity. To overcome this challenge, we propose the use of outer membrane vesicles (OMVs) isolated from two ETEC clinical strains. In these OMVs, proteomic studies revealed the presence of important immunogens, such as heat-labile toxin, colonization factors, adhesins and mucinases. Furthermore, these vesicles proved to be immunogenic after subcutaneous administration in BALB/c mice. Since ETEC is an enteropathogen, it is necessary to induce both systemic and mucosal immunity. For this purpose, the vesicles, free or encapsulated in zein nanoparticles coated with a Gantrez®-mannosamine conjugate, were administered orally. Biodistribution studies showed that the encapsulation of OMVs delayed the transit through the gut. These results were confirmed by in vivo study, in which OMV encapsulation resulted in higher levels of specific antibodies IgG2a. Further studies are needed to evaluate the protection efficacy of this vaccine approach.
Collapse
Affiliation(s)
- Melibea Berzosa
- Department of Microbiology and Parasitology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.C.); (C.G.)
| | - Alzbeta Nemeskalova
- Department of Microbiology and Parasitology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.C.); (C.G.)
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Alba Calvo
- Department of Microbiology and Parasitology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.C.); (C.G.)
| | - Gemma Quincoces
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (G.Q.); (M.C.); (F.P.)
| | - María Collantes
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (G.Q.); (M.C.); (F.P.)
| | - Felix Pareja
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (G.Q.); (M.C.); (F.P.)
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.C.); (C.G.)
| | - Juan Manuel Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
2
|
Vetvicka V, Vannucci L, Sima P. β-glucan as a new tool in vaccine development. Scand J Immunol 2019; 91:e12833. [PMID: 31544248 DOI: 10.1111/sji.12833] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Vaccination constitutes one of the major breakthroughs in human medicine. At the same time, development of more immunogenic vaccine alternatives to using aluminium-based adjuvants is one of the most important phases of vaccination development. Among different sources of carbohydrate polymers, including plants, microbes and synthetic sources tested, glucans were found to be the most promising vaccine adjuvant, as they alone stimulate various immune reactions including antibody production without any negative side effects. The use of glucan particles as a delivery system is a viable option based on the documented efficient antigen loading and receptor-targeted uptake in antigen-presenting cells. In addition to particles, soluble glucans can be used as novel hydrogels or as direct immunocyte-targeting delivery systems employing novel complexes with oligodeoxynucleotides. This review focuses on recent advances in glucan-based vaccine development from glucan-based conjugates to a glucan-based delivery and adjuvant platform.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology, Prague, Czech Republic
| | - Petr Sima
- Laboratory of Immunotherapy, Institute of Microbiology, Prague, Czech Republic
| |
Collapse
|
3
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
4
|
Assessment of the efficacy of two novel DNA vaccine formulations against highly pathogenic Porcine Reproductive and Respiratory Syndrome Virus. Sci Rep 2017; 7:41886. [PMID: 28157199 PMCID: PMC5291100 DOI: 10.1038/srep41886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023] Open
Abstract
Since May 2006, a highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has emerged and prevailed in mainland China, affecting over 2 million pigs. Commercial PRRSV killed and modified live vaccines cannot provide complete protection against HP-PRRSV due to genetic variation. Development of more effective vaccines against the emerging HP-PRRSV is urgently required. In our previous studies, two formulations of DNA vaccines (pcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5) based on the HP-PRRSV were constructed and shown to induce enhanced humoral and cellular immune responses in mice. The objective of this study was to evaluate the immune response induced by these novel formulations in piglets. PcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5 vaccines induced significantly enhanced GP5-specific antibody and PRRSV-specific neutralizing antibody in pigs compared with the pcDNA3.1-SynORF5 parental construct. Though IFN-γ levels and lymphocyte proliferation responses induced by the two DNA vaccine formulations were comparable to that induced by the pcDNA3.1-SynORF5 construct, each of the novel formulations provided efficient protection against challenge with HP-PRRSV. Non-severe clinical signs and rectal temperatures were observed in pigs immunized with BPEI/PLGA-SynORF5 compared with other groups. Thus, these novel DNA constructs may represent promising candidate vaccines against emerging HP-PRRSV.
Collapse
|
5
|
Baert K, De Geest BG, De Greve H, Cox E, Devriendt B. Duality of β-glucan microparticles: antigen carrier and immunostimulants. Int J Nanomedicine 2016; 11:2463-9. [PMID: 27330289 PMCID: PMC4898424 DOI: 10.2147/ijn.s101881] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Designing efficient recombinant mucosal vaccines against enteric diseases is still a major challenge. Mucosal delivery of recombinant vaccines requires encapsulation in potent immunostimulatory particles to induce an efficient immune response. This paper evaluates the capacity of β-glucan microparticles (GPs) as antigen vehicles and characterizes their immune-stimulatory effects. The relevant infectious antigen FedF was chosen to be loaded inside the microparticles. The incorporation of FedF inside the particles was highly efficient (roughly 85%) and occurred without antigen degradation. In addition, these GPs have immunostimulatory effects as well, demonstrated by the strong reactive oxygen species (ROS) production by porcine neutrophils upon their recognition. Although antigen-loaded GPs still induce ROS production, antigen loading decreases this production by neutrophils for reasons yet unknown. However, these antigen-loaded GPs are still able to bind their specific β-glucan receptor, demonstrated by blocking complement receptor 3, which is the major β-glucan receptor on porcine neutrophils. The dual character of these particles is confirmed by a T-cell proliferation assay. FedF-loaded particles induce a significantly higher FedF-specific T-cell proliferation than soluble FedF. Taken together, these results show that GPs are efficient antigen carriers with immune-stimulatory properties.
Collapse
Affiliation(s)
- Kim Baert
- Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Merelbeke, Ghent, Belgium
| | - Henri De Greve
- Structural Biology Research Centre, VIB, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Ghent, Belgium
| | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Ghent, Belgium
| |
Collapse
|
6
|
Brenza TM, Petersen LK, Zhang Y, Huntimer LM, Ramer-Tait AE, Hostetter JM, Wannemuehler MJ, Narasimhan B. Pulmonary biodistribution and cellular uptake of intranasally administered monodisperse particles. Pharm Res 2014; 32:1368-82. [PMID: 25297714 DOI: 10.1007/s11095-014-1540-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE For the rational design of nanovaccines against respiratory pathogens, careful selection of optimal particle size and chemistry is paramount. This work investigates the impact of these properties on the deposition, biodistribution, and cellular interactions of nanoparticles within the lungs. METHOD In this work, biodegradable poly(sebacic anhydride) (poly(SA)) nanoparticles of multiple sizes were synthesized with narrow particle size distributions. The lung deposition and retention as well as the internalization by phagocytic cells of these particles were compared to that of non-degradable monodisperse polystyrene nanoparticles of similar sizes. RESULTS The initial deposition of intranasally administered particles in the lungs was dependent on primary particle size, with maximal deposition occurring for the 360-470 nm particles, regardless of chemistry. Over time, both particle size and chemistry affected the frequency of particle-positive cells and the specific cell types taking up particles. The biodegradable poly(SA) particles associated more closely with phagocytic cells and the dynamics of this association impacted the clearance of these particles from the lung. CONCLUSIONS The findings reported herein indicate that both size and chemistry control the fate of intranasally administered particles and that the dynamics of particle association with phagocytic cells in the lungs provide important insights for the rational design of pulmonary vaccine delivery vehicles.
Collapse
Affiliation(s)
- Timothy M Brenza
- Department of Chemical and Biological Engineering, Iowa State University, 2035 Sweeney Hall, Ames, Iowa, 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Li X, Yu M, Fan W, Gan Y, Hovgaard L, Yang M. Orally active-targeted drug delivery systems for proteins and peptides. Expert Opin Drug Deliv 2014; 11:1435-47. [DOI: 10.1517/17425247.2014.924500] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
De Smet R, Allais L, Cuvelier CA. Recent advances in oral vaccine development: yeast-derived β-glucan particles. Hum Vaccin Immunother 2014; 10:1309-18. [PMID: 24553259 DOI: 10.4161/hv.28166] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oral vaccination is the most challenging vaccination method due to the administration route. However, oral vaccination has socio-economic benefits and provides the possibility of stimulating both humoral and cellular immune responses at systemic and mucosal sites. Despite the advantages of oral vaccination, only a limited number of oral vaccines are currently approved for human use. During the last decade, extensive research regarding antigen-based oral vaccination methods have improved immunogenicity and induced desired immunological outcomes. Nevertheless, several factors such as the harsh gastro-intestinal environment and oral tolerance impede the clinical application of oral delivery systems. To date, human clinical trials investigating the efficacy of these systems are still lacking. This review addresses the rationale and key biological and physicochemical aspects of oral vaccine design and highlights the use of yeast-derived β-glucan microparticles as an oral vaccine delivery platform.
Collapse
|
9
|
Dinglasan RR, Armistead JS, Nyland JF, Jiang X, Mao HQ. Single-dose microparticle delivery of a malaria transmission-blocking vaccine elicits a long-lasting functional antibody response. Curr Mol Med 2013; 13:479-87. [PMID: 23331003 PMCID: PMC3706950 DOI: 10.2174/1566524011313040002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 12/15/2022]
Abstract
Malaria sexual stage and mosquito transmission-blocking vaccines (SSM-TBV) have recently gained prominence as a necessary tool for malaria eradication. SSM-TBVs are unique in that, with the exception of parasite gametocyte antigens, they primarily target parasite or mosquito midgut surface antigens expressed only inside the mosquito. As such, the primary perceived limitation of SSM-TBVs is that the absence of natural boosting following immunization will limit its efficacy, since the antigens are never presented to the human immune system. An ideal, safe SSM-TBV formulation must overcome this limitation. We provide a focused evaluation of relevant nano-/microparticle technologies that can be applied toward the development of leading SSM-TBV candidates, and data from a proof-of-concept study demonstrating that a single inoculation and controlled release of antigen in mice, can elicit long-lasting protective antibody titers. We conclude by identifying the remaining critical gaps in knowledge and opportunities for moving SSM-TBVs to the field.
Collapse
Affiliation(s)
- R R Dinglasan
- W Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
10
|
Malaria vaccine adjuvants: latest update and challenges in preclinical and clinical research. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282913. [PMID: 23710439 PMCID: PMC3655447 DOI: 10.1155/2013/282913] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
There is no malaria vaccine currently available, and the most advanced candidate has recently reported a modest 30% efficacy against clinical malaria. Although many efforts have been dedicated to achieve this goal, the research was mainly directed to identify antigenic targets. Nevertheless, the latest progresses on understanding how immune system works and the data recovered from vaccination studies have conferred to the vaccine formulation its deserved relevance. Additionally to the antigen nature, the manner in which it is presented (delivery adjuvants) as well as the immunostimulatory effect of the formulation components (immunostimulants) modulates the immune response elicited. Protective immunity against malaria requires the induction of humoral, antibody-dependent cellular inhibition (ADCI) and effector and memory cell responses. This review summarizes the status of adjuvants that have been or are being employed in the malaria vaccine development, focusing on the pharmaceutical and immunological aspects, as well as on their immunization outcomings at clinical and preclinical stages.
Collapse
|
11
|
Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 2013; 8:360-76. [PMID: 23316023 DOI: 10.1002/cmdc.201200487] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/08/2012] [Indexed: 12/11/2022]
Abstract
Traditional vaccines, based on the administration of killed or attenuated microorganisms, have proven to be among the most effective methods for disease prevention. Safety issues related to administering these complex mixtures, however, prevent their universal application. Through identification of the microbial components responsible for protective immunity, vaccine formulations can be simplified, enabling molecular-level vaccine characterization, improved safety profiles, prospects to develop new high-priority vaccines (e.g. for HIV, tuberculosis, and malaria), and the opportunity for extensive vaccine component optimization. This subunit approach, however, comes at the expense of decreased immunity, requiring the addition of immunostimulatory agents (adjuvants). As few adjuvants are currently used in licensed vaccines, adjuvant development represents an exciting area for medicinal chemists to play a role in the future of vaccine development. In addition, immune responses can be further customized though optimization of delivery systems, tuning the size of particulate vaccines, targeting specific cells of the immune system (e.g. dendritic cells), and adding components to aid vaccine efficacy in whole immunized populations (e.g. promiscuous T-helper epitopes). Herein we review the current state of the art and future direction in subunit vaccine development, with a focus on the described components and their potential to steer the immune response toward a desired response.
Collapse
Affiliation(s)
- Peter Michael Moyle
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | | |
Collapse
|
12
|
Gutiérrez AH, Spero DM, Gay C, Zimic M, De Groot AS. New vaccines needed for pathogens infecting animals and humans: One Health. Hum Vaccin Immunother 2012; 8:971-8. [PMID: 22485046 DOI: 10.4161/hv.20202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The field of "One Health" encourages researchers to collaborate across a wide range of disciplines to improve health at the animal-human-ecosystems interface. One Health recognizes the potential of emerging infectious diseases to impact public health and global food security, and the need for a multidisciplinary approach to counteract the effect of these diseases. Vaccinologists are also beginning to engage in research related to One Health, recognizing that preventing transmission of emerging infectious diseases at the animal-human interface is critically important for protecting the world population from epizootics and pandemics. In this synopsis of recent work in the One Health field, we describe some emerging One Health pathogens, discuss the importance of One Health to food safety and biodefense, propose strategies for improving One Health including the development of new vaccines and new vaccine design approaches, and close with a brief discussion of the opportunities and risks related to One Health vaccine research.
Collapse
Affiliation(s)
- Andres H Gutiérrez
- Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
What are nanoparticles and why are they important in dermatology? These questions are addressed by highlighting recent developments in the nanotechnology field that have increased the potential for intentional and unintentional nanoparticle skin exposure. The role of environmental factors in the interaction of nanoparticles with skin and the potential mechanisms by which nanoparticles may influence skin response to environmental factors are discussed. Trends emerging from recent literature suggest that the positive benefit of engineered nanoparticles for use in cosmetics and as tools for understanding skin biology and curing skin disease outweigh potential toxicity concerns. Discoveries reported in this journal are highlighted. This review begins with a general introduction to the field of nanotechnology and nanomedicine. This is followed by a discussion of the current state of understanding of nanoparticle skin penetration and their use in three therapeutic applications. Challenges that must be overcome to derive clinical benefit from the application of nanotechnology to skin are discussed last, providing perspective on the significant opportunity that exists for future studies in investigative dermatology.
Collapse
Affiliation(s)
- Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA.
| |
Collapse
|