1
|
Agnihotri TG, Dahifale A, Gomte SS, Rout B, Peddinti V, Jain A. Nanosystems at Nexus: Navigating Nose-to-Brain Delivery for Glioblastoma Treatment. Mol Pharm 2025. [PMID: 39746097 DOI: 10.1021/acs.molpharmaceut.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Glioblastoma multiforme (GBM) is considered to be one of the most devastating brain tumors with a shorter life expectancy. Several factors contribute to the dismal prognosis of GBM patients including the complicated nature of GBM, the ability of tumor cells to resist treatment, and the difficulty of delivering drugs to the brain because of barriers like the blood-brain barrier (BBB) and blood-tumor barrier (BTB). The unique challenges posed by the BBB in delivering therapeutic agents to the brain have led to the development of innovative nanotechnology-based approaches. By exploiting the olfactory/trigeminal pathway, nanosystems offer a promising strategy for targeted drug delivery to the brain, glioblastoma tumors in particular. This review contemplates varied nanocarriers, including polymeric nanoparticles, lipid-based nanosystems, in situ gel formulations, peptide, and stem cell-based nanoformulations, signifying their utility in brain targeting with minimal systemic side effects. Emerging trends in gene therapy and immunotherapy in the context of GBM treatment have also been discussed. Since safety is a paramount aspect for any drug product to get approved, this review also delves into toxicological considerations associated with intranasal delivery of nanosystems. Regulatory aspects and critical factors for the successful development of intranasal products are also explored in this review. Overall, this review underscores the significant advancements in nanotechnology for nose-to-brain delivery and its potential impact on GBM management.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Akanksha Dahifale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
2
|
Rahban M, Joushi S, Bashiri H, Saso L, Sheibani V. Characterization of prevalent tyrosine kinase inhibitors and their challenges in glioblastoma treatment. Front Chem 2024; 11:1325214. [PMID: 38264122 PMCID: PMC10804459 DOI: 10.3389/fchem.2023.1325214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant primary tumor in the central nervous system. Despite extensive efforts in radiotherapy, chemotherapy, and neurosurgery, there remains an inadequate level of improvement in treatment outcomes. The development of large-scale genomic and proteomic analysis suggests that GBMs are characterized by transcriptional heterogeneity, which is responsible for therapy resistance. Hence, knowledge about the genetic and epigenetic heterogeneity of GBM is crucial for developing effective treatments for this aggressive form of brain cancer. Tyrosine kinases (TKs) can act as signal transducers, regulate important cellular processes like differentiation, proliferation, apoptosis and metabolism. Therefore, TK inhibitors (TKIs) have been developed to specifically target these kinases. TKIs are categorized into allosteric and non-allosteric inhibitors. Irreversible inhibitors form covalent bonds, which can lead to longer-lasting effects. However, this can also increase the risk of off-target effects and toxicity. The development of TKIs as therapeutics through computer-aided drug design (CADD) and bioinformatic techniques enhance the potential to improve patients' survival rates. Therefore, the continued exploration of TKIs as drug targets is expected to lead to even more effective and specific therapeutics in the future.
Collapse
Affiliation(s)
- Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Mahajan AS, Stegh AH. Spherical Nucleic Acids as Precision Therapeutics for the Treatment of Cancer-From Bench to Bedside. Cancers (Basel) 2022; 14:cancers14071615. [PMID: 35406387 PMCID: PMC8996871 DOI: 10.3390/cancers14071615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Spherical Nucleic Acids (SNAs) emerged as a new class of nanotherapeutics consisting of a nanoparticle core densely functionalized with a shell of radially oriented synthetic oligonucleotides. The unique three-dimensional architecture of SNAs protects the oligonucleotides from nuclease-mediated degradation, increases oligonucleotide bioavailability, and in the absence of auxiliary transfection agents, enables robust uptake into tumor and immune cells through polyvalent association with cell surface pattern recognition receptors. When composed of gene-regulatory small interfering (si)RNA or immunostimulatory DNA or RNA oligonucleotides, SNAs silence gene expression and induce immune responses superior to those raised by the oligonucleotides in their "free" form. Early phase clinical trials of gene-regulatory siRNA-based SNAs in glioblastoma (NCT03020017) and immunostimulatory Toll-like receptor 9 (TLR9)-agonistic SNAs carrying unmethylated CpG-rich oligonucleotides in solid tumors (NCT03086278) have shown that SNAs represent a safe, brain-penetrant therapy for inhibiting oncogene expression and stimulating immune responses against tumors. This review focuses on the application of SNAs as precision cancer therapeutics, summarizes the findings from first-in-human clinical trials of SNAs in solid tumors, describes the most recent preclinical efforts to rationally design next-generation multimodal SNA architectures, and provides an outlook on future efforts to maximize the anti-neoplastic activity of the SNA platform.
Collapse
Affiliation(s)
- Akanksha S. Mahajan
- Ken and Ruth Davee Department of Neurology, The International Institute for Nanotechnology, The Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
| | - Alexander H. Stegh
- Ken and Ruth Davee Department of Neurology, The International Institute for Nanotechnology, The Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
- Department of Neurological Surgery, The Brain Tumor Center, Washington University School of Medicine, Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
4
|
Howarth A, Madureira PA, Lockwood G, Storer LCD, Grundy R, Rahman R, Pilkington GJ, Hill R. Modulating autophagy as a therapeutic strategy for the treatment of paediatric high-grade glioma. Brain Pathol 2019; 29:707-725. [PMID: 31012506 PMCID: PMC8028648 DOI: 10.1111/bpa.12729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Paediatric high-grade gliomas (pHGG) represent a therapeutically challenging group of tumors. Despite decades of research, there has been minimal improvement in treatment and the clinical prognosis remains poor. Autophagy, a highly conserved process for recycling metabolic substrates is upregulated in pHGG, promoting tumor progression and evading cell death. There is significant crosstalk between autophagy and a plethora of critical cellular pathways, many of which are dysregulated in pHGG. The following article will discuss our current understanding of autophagy signaling in pHGG and the potential modulation of this network as a therapeutic target.
Collapse
Affiliation(s)
- Alison Howarth
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| | - Patricia A. Madureira
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
- Centre for Biomedical Research (CBMR)University of AlgarveFaroPortugal
| | - George Lockwood
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Lisa C. D. Storer
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Richard Grundy
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Ruman Rahman
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Geoffrey J. Pilkington
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| | - Richard Hill
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
5
|
Juthani R, Madajewski B, Yoo B, Zhang L, Chen PM, Chen F, Turker MZ, Ma K, Overholtzer M, Longo VA, Carlin S, Aragon-Sanabria V, Huse J, Gonen M, Zanzonico P, Rudin CM, Wiesner U, Bradbury MS, Brennan CW. Ultrasmall Core-Shell Silica Nanoparticles for Precision Drug Delivery in a High-Grade Malignant Brain Tumor Model. Clin Cancer Res 2019; 26:147-158. [PMID: 31515460 DOI: 10.1158/1078-0432.ccr-19-1834] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Small-molecule inhibitors have revolutionized treatment of certain genomically defined solid cancers. Despite breakthroughs in treating systemic disease, central nervous system (CNS) metastatic progression is common, and advancements in treating CNS malignancies remain sparse. By improving drug penetration across a variably permeable blood-brain barrier and diffusion across intratumoral compartments, more uniform delivery and distribution can be achieved to enhance efficacy. EXPERIMENTAL DESIGN Ultrasmall fluorescent core-shell silica nanoparticles, Cornell prime dots (C' dots), were functionalized with αv integrin-binding (cRGD), or nontargeting (cRAD) peptides, and PET labels (124I, 89Zr) to investigate the utility of dual-modality cRGD-C' dots for enhancing accumulation, distribution, and retention (ADR) in a genetically engineered mouse model of glioblastoma (mGBM). mGBMs were systemically treated with 124I-cRGD- or 124I-cRAD-C' dots and sacrificed at 3 and 96 hours, with concurrent intravital injections of FITC-dextran for mapping blood-brain barrier breakdown and the nuclear stain Hoechst. We further assessed target inhibition and ADR following attachment of dasatinib, creating nanoparticle-drug conjugates (Das-NDCs). Imaging findings were confirmed with ex vivo autoradiography, fluorescence microscopy, and p-S6RP IHC. RESULTS Improvements in brain tumor delivery and penetration, as well as enhancement in the ADR, were observed following administration of integrin-targeted C' dots, as compared with a nontargeted control. Furthermore, attachment of the small-molecule inhibitor, dasatinib, led to its successful drug delivery throughout mGBM, demonstrated by downstream pathway inhibition. CONCLUSIONS These results demonstrate that highly engineered C' dots are promising drug delivery vehicles capable of navigating the complex physiologic barriers observed in a clinically relevant brain tumor model.
Collapse
Affiliation(s)
- Rupa Juthani
- Department of Neurosurgery, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Brian Madajewski
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Barney Yoo
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York. .,Department of Chemistry, Hunter College, The City University of New York, New York, New York
| | - Li Zhang
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Pei-Ming Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Feng Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Melik Z Turker
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York
| | - Kai Ma
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York.,BCMB Allied Program, Weill Cornell Medical College, New York, New York
| | - Valerie A Longo
- Small-Animal Imaging Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean Carlin
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York
| | | | - Jason Huse
- Human Oncology & Pathogenesis Program, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Pat Zanzonico
- Department of Medical Physics, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Charles M Rudin
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ulrich Wiesner
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York.
| | - Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York. .,Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Cameron W Brennan
- Department of Neurosurgery, Sloan Kettering Institute for Cancer Research, New York, New York.
| |
Collapse
|
6
|
Sautter L, Hofheinz R, Tuettenberg J, Grimm M, Vajkoczy P, Groden C, Schmieder K, Hochhaus A, Wenz F, Giordano FA. Open-Label Phase II Evaluation of Imatinib in Primary Inoperable or Incompletely Resected and Recurrent Glioblastoma. Oncology 2019; 98:16-22. [PMID: 31514200 DOI: 10.1159/000502483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE Preclinical studies indicated that imatinib may have single-agent activity in glioblastoma through inhibition of tyrosine kinase activity and also that it might enhance the efficacy of radiotherapy. We therefore sought to investigate clinical efficacy in patients with newly diagnosed and recurrent glioblastoma in combination with radiotherapy. METHODS We conducted a nonrandomized, 2-arm, open-label phase II trial including patients aged 18 years or older with an ECOG performance status of 0-2 that were either newly diagnosed (arm A) with a measurable tumor (i.e., after incomplete resection or biopsy) or that were diagnosed with progression of a glioblastoma after initial therapy (arm B). Patients in arm A received 600 mg/day imatinib in combination with hypofractionated radiotherapy (2.5 Gy per fraction, 22 fractions). Patients in arm B received 600 mg/day imatinib alone or in combination with re-irradiation at various doses. In case tumor progression occurred, CCNU was added (2 cycles, 100 mg/m2) to imatinib. The primary end point was progression-free survival (PFS). The secondary end point was safety, defined as per Common Terminology Criteria for Adverse Events (version 2.0). Overall survival (OS) was analyzed as an exploratory end point. RESULTS Fifty-one patients were enrolled, of which 19 were included in arm A and 32 in arm B. The median follow-up was 4 (0.5-30) months in arm A and 6.5 (0.3-51.5) months in arm B. The median PFS was 2.8 months (95% CI 0-8.7) in arm A and 2.1 months (95% CI 0-11.8) in arm B. The median OS was 5.0 (0.8-30) months (95% CI 0-24.1) in arm A and 6.5 (0.3-51.5) months (95% CI 0-32.5) in arm B. The major grade 3 events were seizure (present in 17 patients), pneumonia (11 patients), and vigilance decrease (7 patients). CONCLUSIONS Imatinib showed no measurable activity in patients with newly diagnosed or recurrent glioblastoma.
Collapse
Affiliation(s)
- Lisa Sautter
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ralf Hofheinz
- Day Treatment Center (TTZ), Interdisciplinary Tumor Center Mannheim (ITM) and 3rd Medical Clinic, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jochen Tuettenberg
- Department of Neurosurgery, Klinikum Idar-Oberstein, Idar-Oberstein, Germany
| | - Mario Grimm
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital, Humboldt University Berlin, Berlin, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | - Andreas Hochhaus
- Department of Internal Medicine II, University Hospital Jena, Jena, Germany
| | - Frederik Wenz
- University Medical Center Freiburg, Freiburg, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,
| |
Collapse
|
7
|
Abstract
Gliomas are heterogeneous tumours derived from glial cells and remain the deadliest form of brain cancer. Although the glioma stem cell sits at the apex of the cellular hierarchy, how it produces the vast cellular constituency associated with frank glioma remains poorly defined. We explore glioma tumorigenesis through the lens of glial development, starting with the neurogenic-gliogenic switch and progressing through oligodendrocyte and astrocyte differentiation. Beginning with the factors that influence normal glial linage progression and diversity, a pattern emerges that has useful parallels in the development of glioma and may ultimately provide targetable pathways for much-needed new therapeutics.
Collapse
|
8
|
Sestito S, Runfola M, Tonelli M, Chiellini G, Rapposelli S. New Multitarget Approaches in the War Against Glioblastoma: A Mini-Perspective. Front Pharmacol 2018; 9:874. [PMID: 30123135 PMCID: PMC6085564 DOI: 10.3389/fphar.2018.00874] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common tumor of the CNS, and the deadliest form of brain cancer. The rapid progression, the anatomic location in the brain and a deficient knowledge of the pathophysiology, often limit the effectiveness of therapeutic interventions. Current pillars of GBM therapies include surgical resection, radiotherapy and chemotherapy, but the low survival rate and the short life expectation following these treatments strongly underline the urgency to identify innovative and more effective therapeutic tools. Frequently, patients subjected to a mono-target therapy, such as Temozolomide (TMZ), develop drug resistance and undergo relapse, indicating that targeting a single cellular node is not sufficient for eradication of this disease. In this context, a multi-targeted therapeutic approach aimed at using compounds, alone or in combination, capable of inhibiting more than one specific molecular target, offers a promising alternative. Such strategies have already been well integrated into drug discovery campaigns, including in the field of anticancer drugs. In this miniperspective, we will discuss the recent progress in the treatment of GBM focusing on innovative and effective preclinical strategies, which are based on a multi-targeted approach.
Collapse
Affiliation(s)
| | | | - Marco Tonelli
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Lieberman F. Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials. F1000Res 2017; 6:1892. [PMID: 29263783 PMCID: PMC5658706 DOI: 10.12688/f1000research.11493.1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/19/2022] Open
Abstract
This is an exciting time in neuro-oncology. Discoveries elucidating the molecular mechanisms of oncogenesis and the molecular subtypes of glioblastoma multiforme (GBM) have led to new diagnostic and classification schemes with more prognostic power than histology alone. Molecular profiling has become part of the standard neuropathological evaluation of GBM. Chemoradiation followed by adjuvant temozolomide remains the standard therapy for newly diagnosed GBM, but survival remains unsatisfactory. Patients with recurrent GBM continue to have a dismal prognosis, but neuro-oncology centers with active clinical trial programs are seeing a small but increasing cadre of patients with longer survival. Molecularly targeted therapeutics, personalized therapy based on molecular profiling of individual tumors, and immunotherapeutic strategies are all being evaluated and refined in clinical trials. Understanding of the molecular mechanisms of tumor-mediated immunosuppression, and specifically interactions between tumor cells and immune effector cells in the tumor microenvironment, has led to a new generation of immunotherapies, including vaccine and immunomodulatory strategies as well as T-cell-based treatments. Molecularly targeted therapies, chemoradiation, immunotherapies, and anti-angiogenic therapies have created the need to develop more reliable neuroimaging criteria for differentiating the effects of therapy from tumor progression and changes in blood–brain barrier physiology from treatment response. Translational clinical trials for patients with GBM now incorporate quantitative imaging using both magnetic resonance imaging and positron emission tomography techniques. This update presents a summary of the current standards for therapy for newly diagnosed and recurrent GBM and highlights promising translational research.
Collapse
Affiliation(s)
- Frank Lieberman
- Neurooncology Program, UPMC Hillman Cancer Center, UPMC Cancer Pavilion, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Preclinical therapeutic efficacy of a novel blood-brain barrier-penetrant dual PI3K/mTOR inhibitor with preferential response in PI3K/PTEN mutant glioma. Oncotarget 2017; 8:21741-21753. [PMID: 28423515 PMCID: PMC5400620 DOI: 10.18632/oncotarget.15566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/23/2017] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is an ideal candidate disease for signal transduction targeted therapy because the majority of these tumors harbor genetic alterations that result in aberrant activation of growth factor signaling pathways. Loss of heterozygosity of chromosome 10, mutations in the tumor suppressor gene PTEN, and PI3K mutations are molecular hallmarks of GBM and indicate poor prognostic outcomes in many cancers. Consequently, inhibiting the PI3K pathway may provide therapeutic benefit in these cancers. PI3K inhibitors generally block proliferation rather than induce apoptosis. To restore the sensitivity of GBM to apoptosis induction, targeted agents have been combined with conventional therapy. However, the molecular heterogeneity and infiltrative nature of GBM make it resistant to traditional single agent therapy. Our objectives were to test a dual PI3K/mTOR inhibitor that may cross the blood–brain barrier (BBB) and provide the rationale for using this inhibitor in combination regimens to chemotherapy-induced synergism in GBM. Here we report the preclinical potential of a novel, orally bioavailable PI3K/mTOR dual inhibitor, DS7423 (hereafter DS), in in-vitro and in-vivo studies. DS was tested in mice, and DS plasma and brain concentrations were determined. DS crossed the BBB and led to potent suppression of PI3K pathway biomarkers in the brain. The physiologically relevant concentration of DS was tested in 9 glioma cell lines and 22 glioma-initiating cell (GIC) lines. DS inhibited the growth of glioma tumor cell lines and GICs at mean 50% inhibitory concentration values of less than 250 nmol/L. We found that PI3K mutations and PTEN alterations were associated with cellular response to DS treatment; with preferential inhibition of cell growth in PI3KCA-mutant and PTEN altered cell lines. DS showed efficacy and survival benefit in the U87 and GSC11 orthotopic models of GBM. Furthermore, administration of DS enhanced the antitumor efficacy of temozolomide against GBM in U87 glioma models, which shows that PI3K/mTOR inhibitors may enhance alkylating agent-mediated cytotoxicity, providing a novel regimen for the treatment of GBM. Our present findings establish that DS can specifically be used in patients who have PI3K pathway activation and/or loss of PTEN function. Further studies are warranted to determine the potential of DS for glioma treatment.
Collapse
|
11
|
Yan D, Kowal J, Akkari L, Schuhmacher AJ, Huse JT, West BL, Joyce JA. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene 2017; 36:6049-6058. [PMID: 28759044 PMCID: PMC5666319 DOI: 10.1038/onc.2017.261] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/31/2017] [Accepted: 06/23/2017] [Indexed: 01/19/2023]
Abstract
Glioblastomas represent the most aggressive glioma grade and are associated with a poor patient prognosis. The current standard of care, consisting of surgery, radiation and chemotherapy, only results in a median survival of 14 months, underscoring the importance of developing effective new therapeutic strategies. Among the challenges in treating glioblastomas are primary resistance and the rapid emergence of recurrent disease, which can result from tumor cell-intrinsic mechanisms in addition to tumor microenvironment (TME)-mediated extrinsic resistance. Using a PDGF-B-driven proneural glioma mouse model, we assessed a panel of tyrosine kinase inhibitors with different selectivity profiles. We found that PLX3397, an inhibitor of colony stimulating factor-1 receptor (CSF-1R), blocks glioma progression, markedly suppresses tumor cell proliferation and reduces tumor grade. By contrast, the multi-targeted tyrosine kinase inhibitors dovitinib and vatalanib, which directly target tumor cells, exert minimal anti-tumoral effects in vivo, despite killing glioma cells in vitro, suggesting a TME-mediated resistance mechanism may be involved. Interestingly, PLX3397 interferes with tumor-mediated education of macrophages and consequently restores the sensitivity of glioma cells to tyrosine kinase inhibitors in vivo in preclinical combination trials. Our findings thus demonstrate that microenvironmental alteration by CSF-1R blockade renders tumor cells more susceptible to receptor tyrosine kinase inhibition in a preclinical glioblastoma model, which may have important translational relevance.
Collapse
Affiliation(s)
- D Yan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Kowal
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - L Akkari
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - A J Schuhmacher
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - B L West
- Plexxikon Inc., Berkeley, CA, USA
| | - J A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Popescu AM, Purcaru SO, Alexandru O, Dricu A. New perspectives in glioblastoma antiangiogenic therapy. Contemp Oncol (Pozn) 2015; 20:109-18. [PMID: 27358588 PMCID: PMC4925727 DOI: 10.5114/wo.2015.56122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GB) is highly vascularised tumour, known to exhibit enhanced infiltrative potential. One of the characteristics of glioblastoma is microvascular proliferation surrounding necrotic areas, as a response to a hypoxic environment, which in turn increases the expression of angiogenic factors and their signalling pathways (RAS/RAF/ERK/MAPK pathway, PI3K/Akt signalling pathway and WTN signalling cascade). Currently, a small number of anti-angiogenic drugs, extending glioblastoma patients survival, are available for clinical use. Most medications are ineffective in clinical therapy of glioblastoma due to acquired malignant cells or intrinsic resistance, angiogenic receptors cross-activation and redundant intracellular signalling, or the inability of the drug to cross the blood-brain barrier and to reach its target in vivo. Researchers have also observed that GB tumours are different in many aspects, even when they derive from the same tissue, which is the reason for personalised therapy. An understanding of the molecular mechanisms regulating glioblastoma angiogenesis and invasion may be important in the future development of curative therapeutic approaches for the treatment of this devastating disease.
Collapse
Affiliation(s)
| | - Stefana Oana Purcaru
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova and Clinical Hospital of Neuropsychiatry Craiova, Craiova, Romania
| | - Anica Dricu
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
13
|
Cheng P, Phillips E, Kim SH, Taylor D, Hielscher T, Puccio L, Hjelmeland AB, Lichter P, Nakano I, Goidts V. Kinome-wide shRNA screen identifies the receptor tyrosine kinase AXL as a key regulator for mesenchymal glioblastoma stem-like cells. Stem Cell Reports 2015; 4:899-913. [PMID: 25921812 PMCID: PMC4437464 DOI: 10.1016/j.stemcr.2015.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma is a highly lethal cancer for which novel therapeutics are urgently needed. Two distinct subtypes of glioblastoma stem-like cells (GSCs) were recently identified: mesenchymal (MES) and proneural (PN). To identify mechanisms to target the more aggressive MES GSCs, we combined transcriptomic expression analysis and kinome-wide short hairpin RNA screening of MES and PN GSCs. In comparison to PN GSCs, we found significant upregulation and phosphorylation of the receptor tyrosine kinase AXL in MES GSCs. Knockdown of AXL significantly decreased MES GSC self-renewal capacity in vitro and inhibited the growth of glioblastoma patient-derived xenografts. Moreover, inhibition of AXL with shRNA or pharmacologic inhibitors also increased cell death significantly more in MES GSCs. Clinically, AXL expression was elevated in the MES GBM subtype and significantly correlated with poor prognosis in multiple cancers. In conclusion, we identified AXL as a potential molecular target for novel approaches to treat glioblastoma and other solid cancers. shRNA screen identified kinases that alter GSC viability in a subtype-dependent manner AXL is highly expressed in mesenchymal GSCs Targeting AXL decreases mesenchymal GSC self-renewal, viability, and tumorigenicity AXL expression predicts poor prognosis in several tumor types
Collapse
Affiliation(s)
- Peng Cheng
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA; Department of Neurosurgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Emma Phillips
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg 69120, Germany
| | - Sung-Hak Kim
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - David Taylor
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center, Heidelberg 69120, Germany
| | - Laura Puccio
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg 69120, Germany
| | - Anita B Hjelmeland
- Department of Cell, Developmental, and Integrative Biology (CDIB), University of Alabama, Birmingham, AL 35294, USA
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg 69120, Germany
| | - Ichiro Nakano
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Violaine Goidts
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg 69120, Germany.
| |
Collapse
|
14
|
Guo D, Bell EH, Chakravarti A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncol 2015; 2:289-99. [PMID: 24159371 DOI: 10.2217/cns.13.20] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Malignant gliomas are one of the most treatment-refractory cancers. Development of resistance to chemo- and radio-therapies contributes to these tumors' aggressive phenotypes. Elevated lipid levels in gliomas have been reported for the last 50 years. However, the molecular mechanisms of how tumor tissues obtain lipids and utilize them are not well understood. Recently, the oncogenic signaling EGFR/PI3K/Akt pathway has been shown to enhance lipid synthesis and uptake by upregulating SREBP-1, a master transcriptional factor, to control lipid metabolism. This article discusses the analytical chemistry results of lipid components in glioma tissues from different research groups. The molecular mechanisms that link oncogenes with lipid programming, and identification of the key molecular targets and development of effective drugs to inhibit lipid metabolism in malignant gliomas will be discussed.
Collapse
|
15
|
Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR. Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol 2015; 5:55. [PMID: 25785247 PMCID: PMC4347445 DOI: 10.3389/fonc.2015.00055] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/18/2015] [Indexed: 01/08/2023] Open
Abstract
Glioblastomas, (grade 4 astrocytomas), are aggressive primary brain tumors characterized by histopathological heterogeneity. High-resolution sequencing technologies have shown that these tumors also feature significant inter-tumoral molecular heterogeneity. Molecular subtyping of these tumors has revealed several predictive and prognostic biomarkers. However, intra-tumoral heterogeneity may undermine the use of single biopsy analysis for determining tumor genotype and has implications for potential targeted therapies. The clinical relevance and theories of tumoral molecular heterogeneity in glioblastoma are discussed.
Collapse
Affiliation(s)
- Nicole Renee Parker
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia
| | - Peter Khong
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia
| | - Jonathon Fergus Parkinson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia ; Department of Neurosurgery, Royal North Shore Hospital , St Leonards, NSW , Australia
| | - Viive Maarika Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia
| | - Helen Ruth Wheeler
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia ; Department of Medical Oncology, Royal North Shore Hospital , St Leonards, NSW , Australia
| |
Collapse
|
16
|
Kusne Y, Carrera-Silva EA, Perry AS, Rushing EJ, Mandell EK, Dietrich JD, Errasti AE, Gibbs D, Berens ME, Loftus JC, Hulme C, Yang W, Lu Z, Aldape K, Sanai N, Rothlin CV, Ghosh S. Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFα in glioblastoma. Sci Signal 2014; 7:ra75. [PMID: 25118327 PMCID: PMC4486020 DOI: 10.1126/scisignal.2005196] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Grade IV glioblastoma is characterized by increased kinase activity of epidermal growth factor receptor (EGFR); however, EGFR kinase inhibitors have failed to improve survival in individuals with this cancer because resistance to these drugs often develops. We showed that tumor necrosis factor-α (TNFα) produced in the glioblastoma microenvironment activated atypical protein kinase C (aPKC), thereby producing resistance to EGFR kinase inhibitors. Additionally, we identified that aPKC was required both for paracrine TNFα-dependent activation of the transcription factor nuclear factor κB (NF-κB) and for tumor cell-intrinsic receptor tyrosine kinase signaling. Targeting aPKC decreased tumor growth in mouse models of glioblastoma, including models of EGFR kinase inhibitor-resistant glioblastoma. Furthermore, aPKC abundance and activity were increased in human glioblastoma tumor cells, and high aPKC abundance correlated with poor prognosis. Thus, targeting aPKC might provide an improved molecular approach for glioblastoma therapy.
Collapse
Affiliation(s)
- Yael Kusne
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Anthony S. Perry
- Department of Pathology, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, USA
| | | | - Edward K. Mandell
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Andrea E. Errasti
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel Gibbs
- Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Michael E. Berens
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | | | | | - Weiwei Yang
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhimin Lu
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Nader Sanai
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Carla V. Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sourav Ghosh
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| |
Collapse
|
17
|
Quantitative assessment of intragenic receptor tyrosine kinase deletions in primary glioblastomas: their prevalence and molecular correlates. Acta Neuropathol 2014; 127:747-59. [PMID: 24292886 PMCID: PMC3984672 DOI: 10.1007/s00401-013-1217-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 01/14/2023]
Abstract
Intragenic deletion is the most common form of activating mutation among receptor tyrosine kinases (RTK) in glioblastoma. However, these events are not detected by conventional DNA sequencing methods commonly utilized for tumor genotyping. To comprehensively assess the frequency, distribution, and expression levels of common RTK deletion mutants in glioblastoma, we analyzed RNA from a set of 192 glioblastoma samples from The Cancer Genome Atlas for the expression of EGFRvIII, EGFRvII, EGFRvV (carboxyl-terminal deletion), and PDGFRAΔ8,9. These mutations were detected in 24, 1.6, 4.7, and 1.6 % of cases, respectively. Overall, 29 % (55/189) of glioblastomas expressed at least one RTK intragenic deletion transcript in this panel. For EGFRvIII, samples were analyzed by both quantitative real-time PCR (QRT-PCR) and single mRNA molecule counting on the Nanostring nCounter platform. Nanostring proved to be highly sensitive, specific, and linear, with sensitivity comparable or exceeding that of RNA seq. We evaluated the prognostic significance and molecular correlates of RTK rearrangements. EGFRvIII was only detectable in tumors with focal amplification of the gene. Moreover, we found that EGFRvIII expression was not prognostic of poor outcome and that neither recurrent copy number alterations nor global changes in gene expression differentiate EGFRvIII-positive tumors from tumors with amplification of wild-type EGFR. The wide range of expression of mutant alleles and co-expression of multiple EGFR variants suggests that quantitative RNA-based clinical assays will be important for assessing the relative expression of intragenic deletions as therapeutic targets and/or candidate biomarkers. To this end, we demonstrate the performance of the Nanostring assay in RNA derived from routinely collected formalin-fixed paraffin-embedded tissue.
Collapse
|
18
|
Ahmed R, Oborski MJ, Hwang M, Lieberman FS, Mountz JM. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res 2014; 6:149-70. [PMID: 24711712 PMCID: PMC3969256 DOI: 10.2147/cmar.s54726] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies, and importantly, for facilitating patient management, sparing patients from weeks or months of toxicity and ineffective treatment. This review will present an overview of epidemiology, molecular pathogenesis and current advances in diagnoses, and management of malignant gliomas.
Collapse
Affiliation(s)
- Rafay Ahmed
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew J Oborski
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Misun Hwang
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank S Lieberman
- Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Evans MJ, Holland JP, Rice SL, Doran MG, Cheal SM, Campos C, Carlin SD, Mellinghoff IK, Sawyers CL, Lewis JS. Imaging tumor burden in the brain with 89Zr-transferrin. J Nucl Med 2012; 54:90-5. [PMID: 23236019 DOI: 10.2967/jnumed.112.109777] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED A noninvasive technology that indiscriminately detects tumor tissue in the brain could substantially enhance the management of primary or metastatic brain tumors. Although the documented molecular heterogeneity of diseases that initiate or eventually deposit in the brain may preclude identifying a single smoking-gun molecular biomarker, many classes of brain tumors are generally avid for transferrin. Therefore, we reasoned that applying a radiolabeled derivative of transferrin ((89)Zr-labeled transferrin) may be an effective strategy to more thoroughly identify tumor tissue in the brain, regardless of the tumor's genetic background. METHODS Transferrin was radiolabeled with (89)Zr, and its properties with respect to human models of glioblastoma multiforme were studied in vivo. RESULTS In this report, we show proof of concept that (89)Zr-labeled transferrin ((89)Zr-transferrin) localizes to genetically diverse models of glioblastoma multiforme in vivo. Moreover, we demonstrate that (89)Zr-transferrin can detect an orthotopic lesion with exceptional contrast. Finally, the tumor-to-brain contrast conferred by (89)Zr-transferrin vastly exceeded that observed with (18)F-FDG, currently the most widely used radiotracer to assess tumor burden in the brain. CONCLUSION The results from this study suggest that (89)Zr-transferrin could be a broadly applicable tool for identifying and monitoring tumors in the brain, with realistic potential for near-term clinical translation.
Collapse
Affiliation(s)
- Michael J Evans
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|