1
|
Volynkina IA, Zakalyukina YV, Alferova VA, Belik AR, Yagoda DK, Nikandrova AA, Buyuklyan YA, Udalov AV, Golovin EV, Kryakvin MA, Lukianov DA, Biryukov MV, Sergiev PV, Dontsova OA, Osterman IA. Mechanism-Based Approach to New Antibiotic Producers Screening among Actinomycetes in the Course of the Citizen Science Project. Antibiotics (Basel) 2022; 11:antibiotics11091198. [PMID: 36139977 PMCID: PMC9495171 DOI: 10.3390/antibiotics11091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Since the discovery of streptomycin, actinomycetes have been a useful source for new antibiotics, but there have been diminishing rates of new finds since the 1960s. The decreasing probability of identifying new active agents led to reduced interest in soil bacteria as a source for new antibiotics. At the same time, actinomycetes remain a promising reservoir for new active molecules. In this work, we present several reporter plasmids encoding visible fluorescent protein genes. These plasmids provide primary information about the action mechanism of antimicrobial agents at an early stage of screening. The reporters and the pipeline described have been optimized and designed to employ citizen scientists without specialized skills or equipment with the aim of essentially crowdsourcing the search for new antibiotic producers in the vast natural reservoir of soil bacteria. The combination of mechanism-based approaches and citizen science has proved its effectiveness in practice, revealing a significant increase in the screening rate. As a proof of concept, two new strains, Streptomyces sp. KB-1 and BV113, were found to produce the antibiotics pikromycin and chartreusin, respectively, demonstrating the efficiency of the pipeline.
Collapse
Affiliation(s)
- Inna A. Volynkina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Correspondence: (I.A.V.); (I.A.O.)
| | - Yuliya V. Zakalyukina
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
- Department of Soil Science, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia
| | - Albina R. Belik
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Daria K. Yagoda
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Arina A. Nikandrova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Yuliya A. Buyuklyan
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Andrei V. Udalov
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Evgenii V. Golovin
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Maxim A. Kryakvin
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Dmitrii A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Mikhail V. Biryukov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
- Correspondence: (I.A.V.); (I.A.O.)
| |
Collapse
|
2
|
Wu S, Yang K, Hong Y, Gong Y, Ni J, Yang N, Ding W. A New Perspective on the Antimicrobial Mechanism of Berberine Hydrochloride Against Staphylococcus aureus Revealed by Untargeted Metabolomic Studies. Front Microbiol 2022; 13:917414. [PMID: 35910599 PMCID: PMC9328669 DOI: 10.3389/fmicb.2022.917414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Berberine hydrochloride (BBR) is a natural product widely used in clinical medicine and animal production. It has a variety of antimicrobial effects, but its complex antimicrobial mechanism has not been clarified. This study aimed to discover the metabolic markers and gain a new perspective on the antibacterial mechanism of BBR. The effects of different inhibitory concentrations of BBR on the survival and growth of standard strain Staphylococcus aureus ATCC 25923 were analyzed by the bacteriostatic activity test. Differences in intracellular metabolites of S. aureus following 19 μg/ml BBR exposure for 1 h were investigated by combining non-targeted metabolomics techniques of gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). The results showed that the minimum inhibitory concentration of BBR against S. aureus was 51 μg/ml. A total of 368 and 3,454 putative metabolites were identified by GC-MS and LC-MS analyses, respectively. Principal component analysis showed the separation of intracellular metabolite profiles between BBR-exposed samples and non-exposed controls. Pathway activity profiling analysis indicated a global inhibition of metabolisms by BBR exposure, while enhancement was also found in nucleic acid metabolism, amino sugar, and nucleotide sugar metabolism. Several metabolic markers were screened out mainly based on their variable importance of projection values. Two pyridine dicarboxylic acids were significantly downregulated, suggesting the reduction of stress resistance. The oxidized phospholipid (PHOOA-PE) was accumulated, while lipid antioxidant gamma-tocopherol was decreased, and farnesyl PP, the synthetic precursor of another antioxidant (staphyloxanthin), was decreased below the detection threshold. This evidence indicates that BBR reduced the antioxidant capacity of S. aureus. Accumulation of the precursors (UDP-GlcNAc, CDP-ribitol, and CDP-glycerol) and downregulation of the key metabolite D-Ala-D-Ala suggest the inhibition of cell wall synthesis, especially the peptidoglycan synthesis. Metabolites involved in the shikimate pathway (such as 3-dehydroshikimate) and downstream aromatic amino acid synthesis were disturbed. This study provides the first metabolomics information on the antibacterial mechanism of BBR against S. aureus. The key metabolic markers screened in this study suggest that the shikimate pathway, staphyloxanthin synthesis, and peptidoglycan biosynthesis are new directions for further study of BBR antibacterial mechanism in the future.
Collapse
Affiliation(s)
- Shu Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Dongguan, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Medical University, Dongguan, China
| | - Ni Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Weijun Ding
| |
Collapse
|
3
|
Wunnoo S, Bilhman S, Amnuaikit T, Ontong JC, Singh S, Auepemkiate S, Voravuthikunchai SP. Rhodomyrtone as a New Natural Antibiotic Isolated from Rhodomyrtus tomentosa Leaf Extract: A Clinical Application in the Management of Acne Vulgaris. Antibiotics (Basel) 2021; 10:antibiotics10020108. [PMID: 33499400 PMCID: PMC7912151 DOI: 10.3390/antibiotics10020108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/05/2022] Open
Abstract
Rhodomyrtone, a plant-derived principal compound isolated from Rhodomyrtus tomentosa (Myrtaceae) leaf extract, was assessed as a potential natural alternative for the treatment of acne vulgaris. The clinical efficacy of a 1% liposomal encapsulated rhodomyrtone serum was compared with a marketed 1% clindamycin gel. In a randomized and double-blind controlled clinical trial, 60 volunteers with mild to moderate acne severity were assigned to two groups: rhodomyrtone serum and clindamycin gel. The volunteers were instructed to apply the samples to acne lesions on their faces twice daily. A significant reduction in the total numbers of acne lesions was demonstrated in both treatment groups between week 2 and 8 (p < 0.05). Significant differences in acne numbers compared with the baseline were evidenced at week 2 onwards (p < 0.05). At the end of the clinical trial, the total inflamed acne counts in the 1% rhodomyrtone serum group were significantly reduced by 36.36%, comparable to 34.70% in the clindamycin-treated group (p < 0.05). Furthermore, a commercial prototype was developed, and a clinical assessment of 45 volunteers was performed. After application of the commercial prototype for 1 week, 68.89% and 28.89% of volunteers demonstrated complete and improved inflammatory acne, respectively. All of the subjects presented no signs of irritation or side effects during the treatment. Most of the volunteers (71.11%) indicated that they were very satisfied. Rhodomyrtone serum was demonstrated to be effective and safe for the treatment of inflammatory acne lesions.
Collapse
Affiliation(s)
- Suttiwan Wunnoo
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (S.W.); (S.B.); (J.C.O.); (S.S.)
| | - Siwaporn Bilhman
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (S.W.); (S.B.); (J.C.O.); (S.S.)
| | - Thanaporn Amnuaikit
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Julalak C. Ontong
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (S.W.); (S.B.); (J.C.O.); (S.S.)
| | - Sudarshan Singh
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (S.W.); (S.B.); (J.C.O.); (S.S.)
| | - Sauvarat Auepemkiate
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (S.W.); (S.B.); (J.C.O.); (S.S.)
- Correspondence: ; Tel.: +66-7428-8321
| |
Collapse
|
4
|
Abstract
Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them.
Collapse
Affiliation(s)
- Declan Alan Gray
- Newcastle University
Biosciences Institute, Newcastle University, NE2 4HH Newcastle
upon Tyne, United Kingdom
| | - Michaela Wenzel
- Division of Chemical
Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
5
|
Gherasim O, Grumezescu AM, Grumezescu V, Iordache F, Vasile BS, Holban AM. Bioactive Surfaces of Polylactide and Silver Nanoparticles for the Prevention of Microbial Contamination. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E768. [PMID: 32046134 PMCID: PMC7040686 DOI: 10.3390/ma13030768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
Thanks to its peculiar interactions with biological molecules and structures, metallic silver in the form of silver nanoparticles achieved a remarkable comeback as a potential antimicrobial agent. The antimicrobial use of silver nanoparticles is of clinical importance, as several pathogenic microorganisms developed resistance against various conventional drug treatments. Hence, given the extensive efficiency of silver nanoparticles against drug-sensitive and drug-resistant pathogens, their therapeutic implications were demonstrated in multiple medical applications, such as silver-based dressings, silver-coated biomedical devices and silver-containing nanogels. Bacterial strains possess an intrinsic ability to form well-organized microbial communities, capable of developing adaptive mechanisms to environmental aggression and self-protective pathways against antibiotics. The formation of these mono- or poly-microbial colonies, called biofilms, is closely related with the occurrence of infectious processes which result in severe and chronic pathologies. Therefore, substantial efforts were oriented to the development of new protective coatings for biomedical surfaces, capable of sustaining the physiological processes within human-derived normal cells and to disrupt the microbial contamination and colonization stages. Nanostructured materials based on polylactic acid and silver nanoparticles are herein proposed as bioactive coatings able to prevent the formation of microbial biofilms on biomedical relevant surfaces.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (B.S.V.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (B.S.V.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Florin Iordache
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (B.S.V.)
| | - Alina Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania;
| |
Collapse
|
6
|
DNA double-strand break formation and repair as targets for novel antibiotic combination chemotherapy. Future Sci OA 2019; 5:FSO411. [PMID: 31534779 PMCID: PMC6745595 DOI: 10.2144/fsoa-2019-0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An unrepaired DNA double-strand break (DSB) is lethal to cells. In bacteria, DSBs are usually repaired either via an error-prone pathway, which ligates the ends of the break or an accurate recombination pathway. Due to this lethality, drugs that induce persistent DSBs have been successful in bacterial infection treatment. However, recurrent usage of these drugs has led to emergence of resistant strains. Several articles have thoroughly reviewed the causes, mechanisms and effects of bacterial drug resistance while others have also discussed approaches for facilitating drug discovery and development. Here, we focus on a hypothetical chemotherapeutic strategy that can be explored for minimizing development of resistance to novel DSB-inducing compounds. We also highlight the possibility of utilizing bacterial DSB repair pathways as targets for the discovery and development of novel antibiotics. Our health systems face a huge challenge in the form of antimicrobial resistance, which may result in many common infections becoming untreatable. The same antibiotics that gave modern medicine its power are fast losing their hold on the germs that cause disease. Many options are being developed to restore the control that antibiotics have on the microbes that cause many diseases. In this perspective, we outline a concept that is built around the way and manner in which bacteria mend their DNA whenever there is a break in the DNA chain. We discuss the merits of finding a new class of drugs that obstruct bacterial ability to mend their broken DNA. In this scenario, a combination of these new drugs with existing drugs or other new drugs that cause breaks in bacterial DNA would become a powerful therapeutic regimen. This concept, when fully developed, will offer hope in our effort to combat antimicrobial-resistant infections.
Collapse
|
7
|
Lukežič T, Fayad AA, Bader C, Harmrolfs K, Bartuli J, Groß S, Lešnik U, Hennessen F, Herrmann J, Pikl Š, Petković H, Müller R. Engineering Atypical Tetracycline Formation in Amycolatopsis sulphurea for the Production of Modified Chelocardin Antibiotics. ACS Chem Biol 2019; 14:468-477. [PMID: 30747520 DOI: 10.1021/acschembio.8b01125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To combat the increasing spread of antimicrobial resistance and the shortage of novel anti-infectives, one strategy for the development of new antibiotics is to optimize known chemical scaffolds. Here, we focus on the biosynthetic engineering of Amycolatopsis sulphurea for derivatization of the atypical tetracycline chelocardin and its potent broad-spectrum derivative 2-carboxamido-2-deacetyl-chelocardin. Heterologous biosynthetic genes were introduced into this chelocardin producer to modify functional groups and generate new derivatives. We demonstrate cooperation of chelocardin polyketide synthase with tailoring enzymes involved in biosynthesis of oxytetracycline from Streptomyces rimosus. An interesting feature of chelocardin, compared with oxytetracycline, is the opposite stereochemistry of the C4 amino group. Genes involved in C4 transamination and N,N-dimethylation of oxytetracycline were heterologously expressed in an A. sulphurea mutant lacking C4-aminotransferase. Chelocardin derivatives with opposite stereochemistry of the C4 amino group, as N,N-dimethyl- epi-chelocardin and N,N-dimethyl-2-carboxamido-2-deacetyl- epi-chelocardin, were produced only when the aminotransferase from oxytetracycline was coexpressed with the N-methyltransferase OxyT. Surprisingly, OxyT exclusively accepted intermediates carrying an S-configured amino group at C4 in chelocardin. Applying medicinal chemistry approaches, several 2-carboxamido-2-deacetyl- epi-chelocardin derivatives modified at C4 were produced. Analysis of the antimicrobial activities of the modified compounds demonstrated that the primary amine in the R configuration is a crucial structural feature for activity of chelocardin. Unexpectedly, C10 glycosylated chelocardin analogues were identified, thus revealing the glycosylation potential of A. sulphurea. However, efficient glycosylation of the chelocardin backbone occurred only after engineering of a dimethylated amino group at the C4 position in the opposite S configuration, which suggests some evolutionary remains of chelocardin glycosylation.
Collapse
Affiliation(s)
- Tadeja Lukežič
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Acies Bio, d.o.o., Tehnološki Park 21, 1000 Ljubljana, Slovenia
| | - Antoine Abou Fayad
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Chantal Bader
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Johannes Bartuli
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Sebastian Groß
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Urška Lešnik
- Acies Bio, d.o.o., Tehnološki Park 21, 1000 Ljubljana, Slovenia
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Špela Pikl
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
8
|
Kamal AAM, Maurer CK, Allegretta G, Haupenthal J, Empting M, Hartmann RW. Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, 10065
| | - Carl Nathan
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, 10065
| |
Collapse
|
10
|
Abstract
For thousands of years people were delivered helplessly to various kinds of infections, which often reached epidemic proportions and have cost the lives of millions of people. This is precisely the age since mankind has been thinking of infectious diseases and the question of their causes. However, due to a lack of knowledge, the search for strategies to fight, heal, and prevent the spread of communicable diseases was unsuccessful for a long time. It was not until the discovery of the healing effects of (antibiotic producing) molds, the first microscopic observations of microorganisms in the seventeenth century, the refutation of the abiogenesis theory, and the dissolution of the question "What is the nature of infectious diseases?" that the first milestones within the history of antibiotics research were set. Then new discoveries accelerated rapidly: Bacteria could be isolated and cultured and were identified as possible agents of diseases as well as producers of bioactive metabolites. At the same time the first synthetic antibiotics were developed and shortly thereafter, thousands of synthetic substances as well as millions of soil borne bacteria and fungi were screened for bioactivity within numerous microbial laboratories of pharmaceutical companies. New antibiotic classes with different targets were discovered as on assembly line production. With the beginning of the twentieth century, many of the diseases which reached epidemic proportions at the time-e.g., cholera, syphilis, plague, tuberculosis, or typhoid fever, just to name a few, could be combatted with new discovered antibiotics. It should be considered that hundred years ago the market launch of new antibiotics was significantly faster and less complicated than today (where it takes 10-12 years in average between the discovery of a new antibiotic until the launch). After the first euphoria it was quickly realized that bacteria are able to develop, acquire, and spread numerous resistance mechanisms. Whenever a new antibiotic reached the market it did not take long until scientists observed the first resistant germs. Since the marketing of the first antibiotic there is a neck-on-neck race between scientists who discover natural or develop semisynthetic and synthetic bioactive molecules and bacteria, which have developed resistance mechanisms. The emphasis of this chapter is to give an overview of the history of antibiotics research. The situation within the pre-antibiotic era as well as in the early antibiotic era will be described until the Golden Age of Antibiotics will conclude this time travel. The most important antibiotic classes, information about their discovery, activity spectrum, mode of action, resistance mechanisms, and current application will be presented.
Collapse
Affiliation(s)
- Kathrin I Mohr
- Department Microbial Drugs and German Center for Infection Research, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
11
|
Klahn P, Brönstrup M. New Structural Templates for Clinically Validated and Novel Targets in Antimicrobial Drug Research and Development. Curr Top Microbiol Immunol 2016; 398:365-417. [PMID: 27704270 DOI: 10.1007/82_2016_501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of bacterial resistance against current antibiotic drugs necessitates a continuous renewal of the arsenal of efficacious drugs. This imperative has not been met by the output of antibiotic research and development of the past decades for various reasons, including the declining efforts of large pharma companies in this area. Moreover, the majority of novel antibiotics are chemical derivatives of existing structures that represent mostly step innovations, implying that the available chemical space may be exhausted. This review negates this impression by showcasing recent achievements in lead finding and optimization of antibiotics that have novel or unexplored chemical structures. Not surprisingly, many of the novel structural templates like teixobactins, lysocin, griselimycin, or the albicidin/cystobactamid pair were discovered from natural sources. Additional compounds were obtained from the screening of synthetic libraries and chemical synthesis, including the gyrase-inhibiting NTBI's and spiropyrimidinetrione, the tarocin and targocil inhibitors of wall teichoic acid synthesis, or the boronates and diazabicyclo[3.2.1]octane as novel β-lactamase inhibitors. A motif that is common to most clinically validated antibiotics is that they address hotspots in complex biosynthetic machineries, whose functioning is essential for the bacterial cell. Therefore, an introduction to the biological targets-cell wall synthesis, topoisomerases, the DNA sliding clamp, and membrane-bound electron transport-is given for each of the leads presented here.
Collapse
Affiliation(s)
- Philipp Klahn
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| |
Collapse
|