1
|
Zhang X, Jin F, Ni F, Xu Y, Lu Y, Xia W. Clinical data analysis of 86 patients with invasive infections caused by Malassezia furfur from a tertiary medical center and 37 studies. Front Cell Infect Microbiol 2023; 13:1079535. [PMID: 37457952 PMCID: PMC10340522 DOI: 10.3389/fcimb.2023.1079535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Objective Malassezia furfur (M. furfur) is a lipophilic, conditionally pathogenic yeast that mainly causes skin infections, but the reports of related invasive infections are increasing. The aim of this study is to provide clinical data to assist physicians in the management of patients with invasive infections caused by M. furfur. Methods A case of pulmonary infection caused by M. furfur in a hematopoietic stem cell transplant patient for aplastic anemia was reported. In addition, the literature on invasive infection by M. furfur published in PubMed and Web of Science in English until 31 July 2022 was reviewed. Results Clinical data analysis of 86 patients (from 37 studies and our case) revealed that most of them were preterm (44.2%), followed by adults (31.4%). M. furfur fungemia occurred in 79.1% of the 86 patients, and 45 of them were clearly obtained from catheter blood. Other patients developed catheter-related infections, pneumonia, peripheral thromboembolism, endocarditis, meningitis, peritonitis and disseminated infections. Thirty-eight preterm infants had underlying diseases such as very low birth weight and/or multiple organ hypoplasia. The remaining patients had compromised immunity or severe gastrointestinal diseases. 97.7% of patients underwent invasive procedures and 80.2% received total parenteral nutrition (TPN). Fever, thrombocytopenia and leukocytosis accounted for 55.8%, 38.4% and 24.4% of patients with M. furfur invasive infections, respectively. 69.8% of the patients received antifungal therapy, mainly amphotericin B (AmB) or azoles. Of 84 patients with indwelling catheters, 58.3% underwent the removal of catheters. TPN were discontinued in 30 of 69 patients. The all-cause mortality of 86 patients was 27.9%. Conclusions M. furfur can cause a variety of invasive infections. These patients mostly occur in premature infants, low immunity and severe gastrointestinal diseases. Indwelling catheters and TPN infusion are major risk factors. AmB, l-AmB and azoles are the most commonly used agents, and simultaneous removal of the catheter and termination of TPN infusion are important for the treatment of M. furfur invasive infections.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Fei Jin
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Fang Ni
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yuqiao Xu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yanfei Lu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
2
|
Chen BY, Lin WZ, Li YL, Bi C, Du LJ, Liu Y, Zhou LJ, Liu T, Xu S, Shi CJ, Zhu H, Wang YL, Sun JY, Liu Y, Zhang WC, Zhang Z, Zhang HL, Zhu YQ, Duan SZ. Characteristics and Correlations of the Oral and Gut Fungal Microbiome with Hypertension. Microbiol Spectr 2023; 11:e0195622. [PMID: 36475759 PMCID: PMC9927468 DOI: 10.1128/spectrum.01956-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
The mycobiome is an essential constituent of the human microbiome and is associated with various diseases. However, the role of oral and gut fungi in hypertension (HTN) remains largely unexplored. In this study, saliva, subgingival plaques, and feces were collected from 36 participants with HTN and 24 healthy controls for metagenomic sequencing. The obtained sequences were analyzed using the Kraken2 taxonomic annotation pipeline to assess fungal composition and diversity. Correlations between oral and gut fungi and clinic parameters, between fungi within the same sample types, and between different sample types were identified by Spearman's correlation analysis. Overall, the subgingival fungal microbiome had substantially higher alpha diversity than the salivary and fecal fungal microbiomes. The fungal microbiomes of the three sample types displayed distinct beta diversity from each other. Oral fungi but not gut fungi in HTN had beta diversity significantly different from that of controls. Among the fungi shared in the oral cavity and gut, Exophiala was the genus with the most notable changes. Exophiala spinifera was the most abundant salivary species in HTN. Some fungal species directly correlated with blood pressure, including gut Exophiala xenobiotica and Exophiala mesophila. The markedly impaired ecological cocorrelation networks of oral and gut fungi in HTN suggested compromised association among fungal species. Most fungi were shared in the oral cavity and gut, and their correlations suggested the potential interplays between oral and gut fungi. In conclusion, the oral cavity and intestine have unique fungal ecological environments. The fungal enrichment and ecology in HTN, the correlations between oral and gut fungi, and the associations between oral and gut fungi and clinical parameters suggest an important role that the fungal microbiome may play in HTN. IMPORTANCE Our study fills the gap in human studies investigating the oral and gut fungal microbiota in association with blood pressure. It characterizes the diversity and composition of the oral and gut fungal microbiome in human subjects, elucidates the dysbiosis of fungal ecology in a hypertensive population, and establishes oral-gut fungal correlations and fungus-clinical parameter correlations. Targeting fungi in the oral cavity and/or gut may provide novel strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chao Bi
- Department of Stomatology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chao-Ji Shi
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yong-Li Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-li Zhang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Qin Zhu
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
3
|
Roudbary M, Vahedi-Shahandashti R, Santos ALSD, Roudbar Mohammadi S, Aslani P, Lass-Flörl C, Rodrigues CF. Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Crit Rev Microbiol 2021; 48:197-221. [PMID: 34358430 DOI: 10.1080/1040841x.2021.1950121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biofilms are highly-organized microbial communities attached to a biotic or an abiotic surface, surrounded by an extracellular matrix secreted by the biofilm-forming cells. The majority of fungal pathogens contribute to biofilm formation within tissues or biomedical devices, leading to serious and persistent infections. The clinical significance of biofilms relies on the increased resistance to conventional antifungal therapies and suppression of the host immune system, which leads to invasive and recurrent fungal infections. While different features of yeast biofilms are well-described in the literature, the structural and molecular basis of biofilm formation of clinically related filamentous fungi has not been fully addressed. This review aimed to address biofilm formation in clinically relevant filamentous fungi.
Collapse
Affiliation(s)
- Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|