1
|
Digital Twins for Tissue Culture Techniques—Concepts, Expectations, and State of the Art. Processes (Basel) 2021. [DOI: 10.3390/pr9030447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Techniques to provide in vitro tissue culture have undergone significant changes during the last decades, and current applications involve interactions of cells and organoids, three-dimensional cell co-cultures, and organ/body-on-chip tools. Efficient computer-aided and mathematical model-based methods are required for efficient and knowledge-driven characterization, optimization, and routine manufacturing of tissue culture systems. As an alternative to purely experimental-driven research, the usage of comprehensive mathematical models as a virtual in silico representation of the tissue culture, namely a digital twin, can be advantageous. Digital twins include the mechanistic of the biological system in the form of diverse mathematical models, which describe the interaction between tissue culture techniques and cell growth, metabolism, and the quality of the tissue. In this review, current concepts, expectations, and the state of the art of digital twins for tissue culture concepts will be highlighted. In general, DT’s can be applied along the full process chain and along the product life cycle. Due to the complexity, the focus of this review will be especially on the design, characterization, and operation of the tissue culture techniques.
Collapse
|
2
|
Wang Y, Dai W, Liu Z, Liu J, Cheng J, Li Y, Li X, Hu J, Lü J. Single-Cell Infrared Microspectroscopy Quantifies Dynamic Heterogeneity of Mesenchymal Stem Cells during Adipogenic Differentiation. Anal Chem 2020; 93:671-676. [PMID: 33290049 DOI: 10.1021/acs.analchem.0c04110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central relevance of cellular heterogeneity to biological phenomena raises the rational needs for analytical techniques with single-cell resolution. Here, we developed a single-cell FTIR microspectroscopy-based method for the quantitative evaluation of cellular heterogeneity by calculating the cell-to-cell similarity distance of the infrared spectral data. Based on this method, we revealed the infrared phenotypes might reflect the dynamic heterogeneity changes in the cell population during the adipogenic differentiation of the human mesenchymal stem cells. These findings provide an alternative label-free optical approach for quantifying the cellular heterogeneity, and the combination with other single-cell analysis tools will be very helpful for understanding the genotype-to-phenotype relationship in cellular populations.
Collapse
Affiliation(s)
- Yadi Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wentao Dai
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China.,Shanghai Center for Bioinformation Technology, No.1278 Ke Yuan Road, Pudong New District, Shanghai 201203, China
| | - Zhixiao Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| | - Jixiang Liu
- Shanghai Center for Bioinformation Technology, No.1278 Ke Yuan Road, Pudong New District, Shanghai 201203, China
| | - Jie Cheng
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| | - Yuanyuan Li
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China.,Shanghai Center for Bioinformation Technology, No.1278 Ke Yuan Road, Pudong New District, Shanghai 201203, China
| | - Xueling Li
- Shanghai University of Medicine and Health Sciences, National Engineering Research Center for Nanotechnology, No. 28 Jiangchuan East Road, Minhang District, Shanghai 201318, China
| | - Jun Hu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| | - Junhong Lü
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| |
Collapse
|
3
|
Hamidouche Z, Rother K, Przybilla J, Krinner A, Clay D, Hopp L, Fabian C, Stolzing A, Binder H, Charbord P, Galle J. Bistable Epigenetic States Explain Age-Dependent Decline in Mesenchymal Stem Cell Heterogeneity. Stem Cells 2016; 35:694-704. [PMID: 27734598 PMCID: PMC5347872 DOI: 10.1002/stem.2514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms by which heterogeneity, a major characteristic of stem cells, is achieved are yet unclear. We here study the expression of the membrane stem cell antigen-1 (Sca-1) in mouse bone marrow mesenchymal stem cell (MSC) clones. We show that subpopulations with varying Sca-1 expression profiles regenerate the Sca-1 profile of the mother population within a few days. However, after extensive replication in vitro, the expression profiles shift to lower values and the regeneration time increases. Study of the promoter of Ly6a unravels that the expression level of Sca-1 is related to the promoter occupancy by the activating histone mark H3K4me3. We demonstrate that these findings can be consistently explained by a computational model that considers positive feedback between promoter H3K4me3 modification and gene transcription. This feedback implicates bistable epigenetic states which the cells occupy with an age-dependent frequency due to persistent histone (de-)modification. Our results provide evidence that MSC heterogeneity, and presumably that of other stem cells, is associated with bistable epigenetic states and suggest that MSCs are subject to permanent state fluctuations. Stem Cells 2017;35:694-704.
Collapse
Affiliation(s)
- Zahia Hamidouche
- INSERM U972, University Paris 11, Hôpital Paul Brousse, Villejuif, France.,Faculty of Biology, Mouloud Mammeri University, Tizi-ouzou, Algeria
| | - Karen Rother
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| | - Jens Przybilla
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| | - Axel Krinner
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| | - Denis Clay
- INSERM U972, University Paris 11, Hôpital Paul Brousse, Villejuif, France
| | - Lydia Hopp
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany.,LIFE: Leipzig Research Center for Civilization Diseases, University Leipzig, Germany
| | - Claire Fabian
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexandra Stolzing
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| | - Pierre Charbord
- INSERM U972, University Paris 11, Hôpital Paul Brousse, Villejuif, France.,IBPS Laboratory of Developmental Biology, University Pierre & Marie Curie, Paris, France
| | - Joerg Galle
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| |
Collapse
|
4
|
Bogdan P, Deasy BM, Gharaibeh B, Roehrs T, Marculescu R. Heterogeneous structure of stem cells dynamics: statistical models and quantitative predictions. Sci Rep 2014; 4:4826. [PMID: 24769917 PMCID: PMC4001100 DOI: 10.1038/srep04826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 04/08/2014] [Indexed: 01/08/2023] Open
Abstract
Understanding stem cell (SC) population dynamics is essential for developing models that can be used in basic science and medicine, to aid in predicting cells fate. These models can be used as tools e.g. in studying patho-physiological events at the cellular and tissue level, predicting (mal)functions along the developmental course, and personalized regenerative medicine. Using time-lapsed imaging and statistical tools, we show that the dynamics of SC populations involve a heterogeneous structure consisting of multiple sub-population behaviors. Using non-Gaussian statistical approaches, we identify the co-existence of fast and slow dividing subpopulations, and quiescent cells, in stem cells from three species. The mathematical analysis also shows that, instead of developing independently, SCs exhibit a time-dependent fractal behavior as they interact with each other through molecular and tactile signals. These findings suggest that more sophisticated models of SC dynamics should view SC populations as a collective and avoid the simplifying homogeneity assumption by accounting for the presence of more than one dividing sub-population, and their multi-fractal characteristics.
Collapse
Affiliation(s)
- Paul Bogdan
- 1] Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089-2560, USA [2]
| | - Bridget M Deasy
- 1] CellStock, Pittsburgh, PA 15237, USA [2] McGowan Institute of Regenerative Medicine of UPMC and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA [3]
| | - Burhan Gharaibeh
- 1] Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA15213, USA [2] Stem Cell Research Center (SCRC), University of Pittsburgh, Pittsburgh, PA 15219, USA [3]
| | - Timo Roehrs
- McGowan Institute of Regenerative Medicine of UPMC and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Radu Marculescu
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|