1
|
Wang X, Fang H. Clinical and Gene Analysis of Fatty Acid Oxidation Disorders Found in Neonatal Tandem Mass Spectrometry Screening. Pharmgenomics Pers Med 2023; 16:577-587. [PMID: 37305019 PMCID: PMC10254624 DOI: 10.2147/pgpm.s402760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Objective To investigate the clinical and gene mutation characteristics of fatty acid oxidative metabolic diseases found in neonatal screening. Methods A retrospective analysis was performed on 29,948 neonatal blood tandem mass spectrometry screening samples from January 2018 to December 2021 in our neonatal screening centre. For screening positive, recall review is still suspected of fatty acid oxidation metabolic disorders in children as soon as possible to improve the genetic metabolic disease-related gene detection package to confirm the diagnosis. All diagnosed children were followed up to the deadline. Results Among 29,948 neonates screened by tandem mass spectrometry, 14 cases of primary carnitine deficiency, six cases of short-chain acyl coenzyme A dehydrogenase deficiency, two cases of carnitine palmitoyltransferase-I deficiency and one case of multiple acyl coenzyme A dehydrogenase deficiency were recalled. Except for two cases of multiple acyl coenzyme A dehydrogenase deficiency that exhibited [manifestations], the other 21 cases were diagnosed pre-symptomatically. Eight mutations of SLC22A5 gene were detected, including c.51C>G, c.403G>A, c.506G>A, c.1400C>G, c.1085C>T, c.706C>T, c.1540G>C and c.338G>A. Compound heterozygous mutation of CPT1A gene c.2201T>C, c.1318G>A, c.2246G>A, c.2125G>A and ETFA gene c.365G>A and c.699_701delGTT were detected, and new mutation sites were found. Conclusion Neonatal tandem mass spectrometry screening is an effective method for identifying fatty acid oxidative metabolic diseases, but it should be combined with urine gas chromatography-mass spectrometry and gene sequencing technology. Our findings enrich the gene mutation profile of fatty acid oxidative metabolic disease and provide evidence for genetic counselling and prenatal diagnosis in families.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
| | - Haining Fang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
| |
Collapse
|
2
|
Lund AM, Wibrand F, Skogstrand K, Bækvad-Hansen M, Gregersen N, Andresen BS, Hougaard DM, Dunø M, Olsen RKJ. Use of Molecular Genetic Analyses in Danish Routine Newborn Screening. Int J Neonatal Screen 2021; 7:ijns7030050. [PMID: 34449524 PMCID: PMC8395600 DOI: 10.3390/ijns7030050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Historically, the analyses used for newborn screening (NBS) were biochemical, but increasingly, molecular genetic analyses are being introduced in the workflow. We describe the application of molecular genetic analyses in the Danish NBS programme and show that second-tier molecular genetic testing is useful to reduce the false positive rate while simultaneously providing information about the precise molecular genetic variant and thus informing therapeutic strategy and easing providing information to parents. When molecular genetic analyses are applied as second-tier testing, valuable functional data from biochemical methods are available and in our view, such targeted NGS technology should be implemented when possible in the NBS workflow. First-tier NGS technology may be a promising future possibility for disorders without a reliable biomarker and as a general approach to increase the adaptability of NBS for a broader range of genetic diseases, which is important in the current landscape of quickly evolving new therapeutic possibilities. However, studies on feasibility, sensitivity, and specificity are needed as well as more insight into what views the general population has towards using genetic analyses in NBS. This may be sensitive to some and could have potentially negative consequences for the NBS programme.
Collapse
Affiliation(s)
- Allan Meldgaard Lund
- Center for Inherited Metabolic Disorders, Departments of Clinical Genetics and Pediatrics, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence: ; Fax: +45-35454072
| | - Flemming Wibrand
- Metabolic Laboratory, Department of Clinical Genetics, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
| | - Kristin Skogstrand
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark; (K.S.); (M.B.-H.); (D.M.H.)
| | - Marie Bækvad-Hansen
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark; (K.S.); (M.B.-H.); (D.M.H.)
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (N.G.); (R.K.J.O.)
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
| | - David M. Hougaard
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark; (K.S.); (M.B.-H.); (D.M.H.)
| | - Morten Dunø
- Molecular Genetics Laboratory, Department of Clinical Genetics, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (N.G.); (R.K.J.O.)
| |
Collapse
|
3
|
Gan Y, Yu F, Fang H. Novel mutation in carnitine palmitoyltransferase 1A detected through newborn screening for a presymptomatic case in China: a case report. Ital J Pediatr 2021; 47:154. [PMID: 34233743 PMCID: PMC8261918 DOI: 10.1186/s13052-021-01094-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Carnitine palmitoyltransferase 1A (CPT1A) deficiency is a rare mitochondrial fatty acid oxidation (FAO) disorder that results in hypoketotic hypoglycemia and hepatic encephalopathy. It is caused by mutation in CPT1A. To date, only two symptomatic cases of CPT1A deficiency have been reported in China. Case presentation A newborn male, without any disease-related clinical manifestations, was diagnosed with CPT1A deficiency through newborn screening. Increased free carnitine levels and a significantly increased C0/(C16 + C18) ratio were detected by tandem mass spectrometry, and subsequently, mutations in CPT1A were found by gene sequence analysis. The patient was advised a low-fat, high-protein diet and followed up regularly. During three-years of follow-up since, the patient showed normal growth velocity and developmental milestones. Whole-exome sequence identified two mutations, c.2201 T > C (p.F734S) and c.1318G > A (p.A440T), in the patient. The c.2201 T > C mutation, which has been reported previously, was inherited from his father, while the c.1318G > A, a novel mutation, was inherited from his mother. The amino acid residues encoded by original sequences are highly conserved across different species. These mutations slightly altered the three-dimensional structure of the protein, as analyzed by molecular modeling, suggesting that they may be pathogenic. Conclusion This is the first case of CPT1A deficiency detected through newborn screening based on diagnostic levels of free carnitine, in China. Three years follow-up suggested that early diagnosis and diet management may improve the prognosis in CPT1A patient. In addition, we identified a novel mutation c.1318G > A in CPT1A,and a possible unique to Chinese lineage mutation c.2201 T > C. Our findings have expanded the gene spectrum of this rare condition and provided a basis for family genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Yi Gan
- Pediatric Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fei Yu
- Pediatric Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Neonatal Genetic Metabolic Disease Screening and Treatment Center in Hubei Province, Wuhan, People's Republic of China
| | - Haining Fang
- Pediatric Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China. .,Neonatal Genetic Metabolic Disease Screening and Treatment Center in Hubei Province, Wuhan, People's Republic of China.
| |
Collapse
|
4
|
Zhang W, Chen Y, Lin C, Peng W, Fu Q, Lin Y. Three Novel and One Potential Hotspot CPT1A Variants in Chinese Patients With Carnitine Palmitoyltransferase 1A Deficiency. Front Pediatr 2021; 9:771922. [PMID: 34869124 PMCID: PMC8633485 DOI: 10.3389/fped.2021.771922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Carnitine palmitoyltransferase 1A (CPT1A) deficiency is an inherited disorder of mitochondrial fatty acid β-oxidation that impairs fasting ketogenesis and gluconeogenesis in the liver. Few studies implementing newborn screening (NBS) for CPT1A deficiency in the Chinese population have been reported. This study aimed to determine the biochemical, clinical, and genetic characteristics of patients with CPT1A deficiency in China. A total of 204,777 newborns were screened using tandem mass spectrometry at Quanzhou Maternity and Children's Hospital between January 2017 and December 2018. Newborns with elevated C0 levels were recruited, and suspected patients were subjected to further genetic analysis. Additionally, all Chinese patients genetically diagnosed with CPT1A deficiency were reviewed and included in the study. Among the 204,777 screened newborns, two patients were diagnosed with CPT1A deficiency; thus, the estimated incidence in the selected population was 1:102,388. In addition to the two patients newly diagnosed with CPT1A deficiency, we included in our cohort 10 Chinese patients who were previously diagnosed. Five of these 12 patients were diagnosed via NBS. All patients exhibited elevated C0 and/or C0/(C16+C18) ratios. No clinical symptoms were observed in the five patients diagnosed via NBS, while all seven patients presented with clinical symptoms, including fever, cough, vomiting, diarrhea, and seizures. Eighteen distinct CPT1A variants were identified, 15 of which have been previously reported. The three novel variants were c.272T>C (p.L91P), c.734G>A (p.R245Q), and c.1336G>A (p.G446S). in silico analysis suggested that all three novel variants were potentially pathogenic. The most common variant was c.2201T>C (p.F734S), with an allelic frequency of 16.67% (4/24). Our findings demonstrated that NBS for CPT1A deficiency is beneficial. The three novel variants expand the mutational spectrum of CPT1A in the Chinese population, and c.2201T>C (p.F734S) may be a potential hotspot CPT1A mutation.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Yanru Chen
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Chunmei Lin
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Weilin Peng
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Qingliu Fu
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Yiming Lin
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| |
Collapse
|
5
|
Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018; 19:93-106. [PMID: 29926323 PMCID: PMC6208583 DOI: 10.1007/s11154-018-9448-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial fatty acid oxidation is an essential pathway for energy production, especially during prolonged fasting and sub-maximal exercise. Long-chain fatty acids are the most abundant fatty acids in the human diet and in body stores, and more than 15 enzymes are involved in long-chain fatty acid oxidation. Pathogenic mutations in genes encoding these enzymes result in a long-chain fatty acid oxidation disorder in which the energy homeostasis is compromised and long-chain acylcarnitines accumulate. Symptoms arise or exacerbate during catabolic situations, such as fasting, illness and (endurance) exercise. The clinical spectrum is very heterogeneous, ranging from hypoketotic hypoglycemia, liver dysfunction, rhabdomyolysis, cardiomyopathy and early demise. With the introduction of several of the long-chain fatty acid oxidation disorders (lcFAOD) in newborn screening panels, also asymptomatic individuals with a lcFAOD are identified. However, despite early diagnosis and dietary therapy, a significant number of patients still develop symptoms emphasizing the need for individualized treatment strategies. This review aims to function as a comprehensive reference for clinical and laboratory findings for clinicians who are confronted with pediatric and adult patients with a possible diagnosis of a lcFAOD.
Collapse
Affiliation(s)
- Suzan J G Knottnerus
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Jeannette C Bleeker
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Lodewijk IJlst
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Frits A Wijburg
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Gepke Visser
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands.
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Riekelt H Houtkooper
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Irvin MR, Aslibekyan S, Hidalgo B, Arnett D. CPT1A: the future of heart disease detection and personalized medicine? ACTA ACUST UNITED AC 2014; 9:9-12. [PMID: 25774225 DOI: 10.2217/clp.13.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M Ryan Irvin
- Department of Epidemiology, University of Alabama at Birmingham
| | | | - Bertha Hidalgo
- Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham
| | - Donna Arnett
- Department of Epidemiology, University of Alabama at Birmingham
| |
Collapse
|
7
|
Lund AM, Hougaard DM, Simonsen H, Andresen BS, Christensen M, Dunø M, Skogstrand K, Olsen RKJ, Jensen UG, Cohen A, Larsen N, Saugmann-Jensen P, Gregersen N, Brandt NJ, Christensen E, Skovby F, Nørgaard-Pedersen B. Biochemical screening of 504,049 newborns in Denmark, the Faroe Islands and Greenland--experience and development of a routine program for expanded newborn screening. Mol Genet Metab 2012; 107:281-93. [PMID: 22795865 DOI: 10.1016/j.ymgme.2012.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Expanded newborn screening for selected inborn errors of metabolism (IEM) in Denmark, the Faroe Islands and Greenland was introduced in 2002. We now present clinical, biochemical, and statistical results of expanded screening (excluding PKU) of 504,049 newborns during nine years as well as diagnoses and clinical findings in 82,930 unscreened newborns born in the same period. The frequencies of diagnoses made within the panel of disorders screened for are compared with the frequencies of the disorders in the decade preceding expanded newborn screening. The expanded screening was performed as a pilot study during the first seven years, and the experience obtained during these years was used in the development of the routine neonatal screening program introduced in 2009. Methods for screening included tandem mass spectrometry and an assay for determination of biotinidase activity. A total of 310 samples from 504,049 newborns gave positive screening results. Of the 310 results, 114 were true positive, including results from 12 newborns in which the disease in question was subsequently diagnosed in their mothers. Thus, the overall frequency of an IEM in the screening panel was 1:4942 (mothers excluded) or 1:4421 (mothers included). The false positive rate was 0.038% and positive predictive value 37%. Overall specificity was 99.99%. All patients with true positive results were followed in The Center for Inherited Metabolic Disorders in Copenhagen, and the mean follow-up period was 45 months (range 2109 months). There were no deaths among the 102 children, and 94% had no clinically significant sequelae at last follow-up. Our study confirms the higher frequency of selected IEM after implementation of expanded newborn screening and suggests an improved outcome for several disorders. We argue that newborn screening for these disorders should be standard of care, though unresolved issues remain, e.g. about newborns with a potential for remaining asymptomatic throughout life. Well organized logistics of the screening program from screening laboratory to centralized, clinical management is important.
Collapse
Affiliation(s)
- Allan Meldgaard Lund
- Center for Inherited Metabolic Disorders, Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|