1
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
2
|
Case report: Acrodermatitis enteropathica result from a novel SLC39A4 gene mutation. Front Pediatr 2022. [PMID: 36479285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
The clinical data and gene sequencing results in a child with acrodermatitis enteropathica were retrospectively reported, and the related literature was reviewed. A girl aged 9 years and 4 months presented with a repeated skin rash, mainly distributed in the perioral, anogenital, and acral areas, accompanied with alopecia, and a low blood zinc level was found many times. A significant improvement was seen after continuous zinc supplementation. The genetic sequencing test demonstrated that the patient had compound heterozygous for two SLC39A4 mutations: c.1466dupT (p.S490Efs*155) and c.295G > A (p.A99T), and her parents were heterozygous carriers of these two mutations. An improvement was achieved after continuous zinc supplementation. This case report might guide further research on this aspect.
Collapse
|
3
|
Perinazzo Pauvels LS, Dorn T, Cartell A, Boza JC, Cestari TF. Trichoscopy in acrodermatitis enteropathica. Int J Dermatol 2021; 61:480-483. [PMID: 34403498 DOI: 10.1111/ijd.15864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Affiliation(s)
| | - Timotio Dorn
- Dermatology Department, Hospital de Clínicas de Porto Alegre, Brazil
| | - André Cartell
- Pathology Department, Hospital de Clínicas de Porto Alegre, Brazil
| | | | | |
Collapse
|
4
|
Zhong W, Yang C, Zhu L, Huang YQ, Chen YF. Analysis of the relationship between the mutation site of the SLC39A4 gene and acrodermatitis enteropathica by reporting a rare Chinese twin: a case report and review of the literature. BMC Pediatr 2020; 20:34. [PMID: 31987033 PMCID: PMC6983971 DOI: 10.1186/s12887-020-1942-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/22/2020] [Indexed: 12/02/2022] Open
Abstract
Background Acrodermatitis enteropathica (AE) is a rare autosomal recessive hereditary skin disease caused by mutations in the SLC39A4 gene and is characterized by periorificial dermatitis, alopecia and diarrhoea due to insufficient zinc absorption. Only one of the three known sets of twins with AE has genetic information. This case reports the discovery of new mutation sites in rare twin patients and draws some interesting conclusions by analysing the relationship between genetic information and clinical manifestations. Case presentation Here, we report a pair of 16-month-old twin boys with AE exhibiting periorificial and acral erythema, scales and blisters, while subsequent laboratory examination showed normal plasma zinc and alkaline phosphatase levels. Further Sanger sequencing demonstrated that the patients were compound heterozygous for two unreported SLC39A4 mutations: a missense mutation in exon 5 (c.926G > T), which led to a substitution of the 309th amino acid residue cysteine with phenylalanine, a splice site mutation occurring in the consensus donor site of intron 5 (c.976 + 2 T > A). A family study revealed that the boys’ parents were heterozygous carriers of these two mutations. Conclusion We identified a new compound heterozygous mutation in Chinese twins with AE, which consisted of two previous unreported variants in exon 5 and intron 5 of SLC39A4. We propose an up-to-date review that different mutations in SLC39A4 may exhibit different AE manifestations. In conjunction with future research, our work may shed light on genotype-phenotype correlations in AE patients and provide knowledge for genetic counselling and treatment for AE patients.
Collapse
Affiliation(s)
- Wei Zhong
- Guangdong Medical College, College of Dermatology, Anhui Medical University, Guangzhou, China.,Guangdong Provincial Dermatology Hospital, Guangzhou, China
| | - Chao Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Lei Zhu
- Guangdong Medical College, College of Dermatology, Anhui Medical University, Guangzhou, China.,Guangdong Provincial Dermatology Hospital, Guangzhou, China
| | - Yu-Qi Huang
- Guangdong Provincial Dermatology Hospital, Guangzhou, China
| | - Yong-Feng Chen
- Dermatology Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Kaya Erdogan H, Bulur I, Saracoglu ZN, Aslan H, Aydogdu SD, Yildiz B. Acrodermatitis enteropathica: A novel mutation of the SLC39A4 gene in a Turkish boy. J Dermatol 2016; 43:966-8. [PMID: 26916651 DOI: 10.1111/1346-8138.13313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hilal Kaya Erdogan
- Department of Dermatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Isil Bulur
- Department of Dermatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Zeynep Nurhan Saracoglu
- Department of Dermatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Huseyin Aslan
- Department of Genetics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sultan Durmuş Aydogdu
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Bahadir Yildiz
- Department of Dermatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
6
|
Kasana S, Din J, Maret W. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples. J Trace Elem Med Biol 2015; 29:47-62. [PMID: 25468189 DOI: 10.1016/j.jtemb.2014.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed. Therefore, clinical tests for genetic disorders of zinc metabolism need to be developed.
Collapse
|
7
|
Geiser J, De Lisle RC, Finkelstein D, Adlard PA, Bush AI, Andrews GK. Clioquinol synergistically augments rescue by zinc supplementation in a mouse model of acrodermatitis enteropathica. PLoS One 2013; 8:e72543. [PMID: 24015258 PMCID: PMC3755987 DOI: 10.1371/journal.pone.0072543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/11/2013] [Indexed: 01/08/2023] Open
Abstract
Background Zinc deficiency due to poor nutrition or genetic mutations in zinc transporters is a global health problem and approaches to providing effective dietary zinc supplementation while avoiding potential toxic side effects are needed. Methods/Principal Findings Conditional knockout of the intestinal zinc transporter Zip4 (Slc39a4) in mice creates a model of the lethal human genetic disease acrodermatitis enteropathica (AE). This knockout leads to acute zinc deficiency resulting in rapid weight loss, disrupted intestine integrity and eventually lethality, and therefore provides a model system in which to examine novel approaches to zinc supplementation. We examined the efficacy of dietary clioquinol (CQ), a well characterized zinc chelator/ionophore, in rescuing the Zip4intest KO phenotype. By 8 days after initiation of the knockout neither dietary CQ nor zinc supplementation in the drinking water was found to be effective at improving this phenotype. In contrast, dietary CQ in conjunction with zinc supplementation was highly effective. Dietary CQ with zinc supplementation rapidly restored intestine stem cell division and differentiation of secretory and the absorptive cells. These changes were accompanied by rapid growth and dramatically increased longevity in the majority of mice, as well as the apparent restoration of the homeostasis of several essential metals in the liver. Conclusions These studies suggest that oral CQ (or other 8-hydroxyquinolines) coupled with zinc supplementation could provide a facile approach toward treating zinc deficiency in humans by stimulating stem cell proliferation and differentiation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Jim Geiser
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Robert C. De Lisle
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - David Finkelstein
- The Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia
| | - Glen K. Andrews
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|