1
|
Lopergolo D, Rosini F, Pretegiani E, Bargagli A, Serchi V, Rufa A. Autosomal recessive cerebellar ataxias: a diagnostic classification approach according to ocular features. Front Integr Neurosci 2024; 17:1275794. [PMID: 38390227 PMCID: PMC10883068 DOI: 10.3389/fnint.2023.1275794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of neurodegenerative disorders affecting primarily the cerebellum and/or its afferent tracts, often accompanied by damage of other neurological or extra-neurological systems. Due to the overlap of clinical presentation among ARCAs and the variety of hereditary, acquired, and reversible etiologies that can determine cerebellar dysfunction, the differential diagnosis is challenging, but also urgent considering the ongoing development of promising target therapies. The examination of afferent and efferent visual system may provide neurophysiological and structural information related to cerebellar dysfunction and neurodegeneration thus allowing a possible diagnostic classification approach according to ocular features. While optic coherence tomography (OCT) is applied for the parametrization of the optic nerve and macular area, the eye movements analysis relies on a wide range of eye-tracker devices and the application of machine-learning techniques. We discuss the results of clinical and eye-tracking oculomotor examination, the OCT findings and some advancing of computer science in ARCAs thus providing evidence sustaining the identification of robust eye parameters as possible markers of ARCAs.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Francesca Rosini
- UOC Stroke Unit, Department of Emergenza-Urgenza, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elena Pretegiani
- Unit of Neurology, Centre Hospitalier Universitaire Vaudoise Lausanne, Unit of Neurology and Cognitive Neurorehabilitation, Universitary Hospital of Fribourg, Fribourg, Switzerland
| | - Alessia Bargagli
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valeria Serchi
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Piekutowska-Abramczuk D, Kaliszewska M, Sułek A, Jurkowska N, Ołtarzewski M, Jabłońska E, Trubicka J, Głowacka A, Ciara E, Kowalski P, Langiewicz-Wojciechowska K, Tesarova M, Zeman J, Kierdaszuk B, Kuczyński D, Chmielewski D, Szymańska E, Bakuła A, Łusakowska A, Lipowska M, Brodacki B, Pera J, Dorobek M, Rydzanicz M, Płoski R, Chrzanowska KH, Bartnik E, Placha G, Kamińska A, Kostera-Pruszczyk A, Krajewska-Walasek M, Tońska K, Pronicka E. The frequency of mitochondrial polymerase gamma related disorders in a large Polish population cohort. Mitochondrion 2019; 47:179-187. [DOI: 10.1016/j.mito.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/02/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
|
3
|
Siibak T, Clemente P, Bratic A, Bruhn H, Kauppila TES, Macao B, Schober FA, Lesko N, Wibom R, Naess K, Nennesmo I, Wedell A, Peter B, Freyer C, Falkenberg M, Wredenberg A. A multi-systemic mitochondrial disorder due to a dominant p.Y955H disease variant in DNA polymerase gamma. Hum Mol Genet 2017; 26:2515-2525. [PMID: 28430993 PMCID: PMC5886115 DOI: 10.1093/hmg/ddx146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/28/2022] Open
Abstract
Mutations in the mitochondrial DNA polymerase, POLG, are associated with a variety of clinical presentations, ranging from early onset fatal brain disease in Alpers syndrome to chronic progressive external ophthalmoplegia. The majority of mutations are linked with disturbances of mitochondrial DNA (mtDNA) integrity and maintenance. On a molecular level, depending on their location within the enzyme, mutations either lead to mtDNA depletion or the accumulation of multiple mtDNA deletions, and in some cases these molecular changes can be correlated to the clinical presentation. We identified a patient with a dominant p.Y955H mutation in POLG, presenting with a severe, early-onset multi-systemic mitochondrial disease with bilateral sensorineural hearing loss, cataract, myopathy, and liver failure. Using a combination of disease models of Drosophila melanogaster and in vitro biochemistry analysis, we compare the molecular consequences of the p.Y955H mutation to the well-documented p.Y955C mutation. We demonstrate that both mutations affect mtDNA replication and display a dominant negative effect, with the p.Y955H allele resulting in a more severe polymerase dysfunction.
Collapse
Affiliation(s)
- Triinu Siibak
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405?30, Sweden
| | - Paula Clemente
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Ana Bratic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne D-50931, Germany
| | - Helene Bruhn
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Timo E S Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne D-50931, Germany
| | - Bertil Macao
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405?30, Sweden
| | - Florian A Schober
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Nicole Lesko
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Karin Naess
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska University Hospital, SE-171?77 Stockholm, Sweden
| | - Anna Wedell
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405?30, Sweden
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405?30, Sweden
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| |
Collapse
|