1
|
Critchley BJ, Gaspar HB, Benedetti S. Targeting the central nervous system in lysosomal storage diseases: Strategies to deliver therapeutics across the blood-brain barrier. Mol Ther 2023; 31:657-675. [PMID: 36457248 PMCID: PMC10014236 DOI: 10.1016/j.ymthe.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are multisystem inherited metabolic disorders caused by dysfunctional lysosomal activity, resulting in the accumulation of undegraded macromolecules in a variety of organs/tissues, including the central nervous system (CNS). Treatments include enzyme replacement therapy, stem/progenitor cell transplantation, and in vivo gene therapy. However, these treatments are not fully effective in treating the CNS as neither enzymes, stem cells, nor viral vectors efficiently cross the blood-brain barrier. Here, we review the latest advancements in improving delivery of different therapeutic agents to the CNS and comment upon outstanding questions in the field of neurological LSDs.
Collapse
Affiliation(s)
- Bethan J Critchley
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK
| | - H Bobby Gaspar
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; Orchard Therapeutics Ltd., London EC4N 6EU, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
2
|
Magat J, Jones S, Baridon B, Agrawal V, Wong H, Giaramita A, Mangini L, Handyside B, Vitelli C, Parker M, Yeung N, Zhou Y, Pungor E, Slabodkin I, Gorostiza O, Aguilera A, Lo MJ, Alcozie S, Christianson TM, Tiger PM, Vincelette J, Fong S, Gil G, Hague C, Lawrence R, Wendt DJ, Lebowitz JH, Bunting S, Bullens S, Crawford BE, Roy SM, Woloszynek JC. Intracerebroventricular dosing of N-sulfoglucosamine sulfohydrolase in mucopolysaccharidosis IIIA mice reduces markers of brain lysosomal dysfunction. J Biol Chem 2022; 298:102625. [PMID: 36306823 PMCID: PMC9694393 DOI: 10.1016/j.jbc.2022.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by N-sulfoglucosamine sulfohydrolase (SGSH) deficiency. SGSH removes the sulfate from N-sulfoglucosamine residues on the nonreducing end of heparan sulfate (HS-NRE) within lysosomes. Enzyme deficiency results in accumulation of partially degraded HS within lysosomes throughout the body, leading to a progressive severe neurological disease. Enzyme replacement therapy has been proposed, but further evaluation of the treatment strategy is needed. Here, we used Chinese hamster ovary cells to produce a highly soluble and fully active recombinant human sulfamidase (rhSGSH). We discovered that rhSGSH utilizes both the CI-MPR and LRP1 receptors for uptake into patient fibroblasts. A single intracerebroventricular (ICV) injection of rhSGSH in MPS IIIA mice resulted in a tissue half-life of 9 days and widespread distribution throughout the brain. Following a single ICV dose, both total HS and the MPS IIIA disease-specific HS-NRE were dramatically reduced, reaching a nadir 2 weeks post dose. The durability of effect for reduction of both substrate and protein markers of lysosomal dysfunction and a neuroimmune response lasted through the 56 days tested. Furthermore, seven weekly 148 μg doses ICV reduced those markers to near normal and produced a 99.5% reduction in HS-NRE levels. A pilot study utilizing every other week dosing in two animals supports further evaluation of less frequent dosing. Finally, our dose-response study also suggests lower doses may be efficacious. Our findings show that rhSGSH can normalize lysosomal HS storage and markers of a neuroimmune response when delivered ICV.
Collapse
Affiliation(s)
- Jenna Magat
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Samantha Jones
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Brian Baridon
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Vishal Agrawal
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Hio Wong
- Department of Process Sciences, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Alexander Giaramita
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Linley Mangini
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Britta Handyside
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Catherine Vitelli
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Monica Parker
- Department of Process Sciences, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Natasha Yeung
- Department of Process Sciences, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Yu Zhou
- Department of Process Sciences, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Erno Pungor
- Department of Process Sciences, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Ilya Slabodkin
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Olivia Gorostiza
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Allora Aguilera
- Department of Process Sciences, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Melanie J. Lo
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Saida Alcozie
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | | | - Pascale M.N. Tiger
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Jon Vincelette
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Sylvia Fong
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Geuncheol Gil
- Department of Process Sciences, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Chuck Hague
- Department of Process Sciences, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Roger Lawrence
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Daniel J. Wendt
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | | | - Stuart Bunting
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Sherry Bullens
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Brett E. Crawford
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Sushmita M. Roy
- Department of Process Sciences, BioMarin Pharmaceutical Inc, Novato, California, USA
| | - Josh C. Woloszynek
- Department of Research, BioMarin Pharmaceutical Inc, Novato, California, USA,For correspondence: Josh C. Woloszynek
| |
Collapse
|
3
|
Hocquemiller M, Hemsley KM, Douglass ML, Tamang SJ, Neumann D, King BM, Beard H, Trim PJ, Winner LK, Lau AA, Snel MF, Gomila C, Ausseil J, Mei X, Giersch L, Plavsic M, Laufer R. AAVrh10 Vector Corrects Disease Pathology in MPS IIIA Mice and Achieves Widespread Distribution of SGSH in Large Animal Brains. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:174-187. [PMID: 31909089 PMCID: PMC6940615 DOI: 10.1016/j.omtm.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022]
Abstract
Patients with mucopolysaccharidosis type IIIA (MPS IIIA) lack the lysosomal enzyme sulfamidase (SGSH), which is responsible for the degradation of heparan sulfate (HS). Build-up of undegraded HS results in severe progressive neurodegeneration for which there is currently no treatment. The ability of the vector adeno-associated virus (AAV)rh.10-CAG-SGSH (LYS-SAF302) to correct disease pathology was evaluated in a mouse model for MPS IIIA. LYS-SAF302 was administered to 5-week-old MPS IIIA mice at three different doses (8.6E+08, 4.1E+10, and 9.0E+10 vector genomes [vg]/animal) injected into the caudate putamen/striatum and thalamus. LYS-SAF302 was able to dose-dependently correct or significantly reduce HS storage, secondary accumulation of GM2 and GM3 gangliosides, ubiquitin-reactive axonal spheroid lesions, lysosomal expansion, and neuroinflammation at 12 weeks and 25 weeks post-dosing. To study SGSH distribution in the brain of large animals, LYS-SAF302 was injected into the subcortical white matter of dogs (1.0E+12 or 2.0E+12 vg/animal) and cynomolgus monkeys (7.2E+11 vg/animal). Increases of SGSH enzyme activity of at least 20% above endogenous levels were detected in 78% (dogs 4 weeks after injection) and 97% (monkeys 6 weeks after injection) of the total brain volume. Taken together, these data validate intraparenchymal AAV administration as a promising method to achieve widespread enzyme distribution and correction of disease pathology in MPS IIIA.
Collapse
Affiliation(s)
| | - Kim M Hemsley
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Meghan L Douglass
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Sarah J Tamang
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Daniel Neumann
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Barbara M King
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Helen Beard
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Paul J Trim
- Mass Spectrometry Core Facility, SAHMRI, Adelaide, SA 5000, Australia
| | - Leanne K Winner
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Adeline A Lau
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Marten F Snel
- Mass Spectrometry Core Facility, SAHMRI, Adelaide, SA 5000, Australia
| | - Cathy Gomila
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie, 80054 Amiens, France
| | - Jérôme Ausseil
- Unité INSERM U1043, Centre de Physiopathologie Toulouse Purpan (CPTP), Université Paul Sabatier, 31024 Toulouse, France
| | - Xin Mei
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Laura Giersch
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Mark Plavsic
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Ralph Laufer
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| |
Collapse
|
4
|
Whole Body and CNS Biodistribution of rhHNS in Cynomolgus Monkeys after Intrathecal Lumbar Administration: Treatment Implications for Patients with MPS IIIA. Int J Mol Sci 2017; 18:ijms18122594. [PMID: 29194406 PMCID: PMC5751197 DOI: 10.3390/ijms18122594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022] Open
Abstract
Mucopolysaccharidosis III type A (MPS IIIA; Sanfilippo syndrome), a genetic lysosomal disorder causing a deficiency of heparan N-sulfatase (HNS), leads to progressive cognitive decline from an early age. An effective enzyme replacement therapy (ERT) for MPS IIIA requires central nervous system (CNS) biodistribution. Recombinant human heparan N-sulfatase (rhHNS), an investigatory ERT for MPS IIIA, has been formulated for intrathecal (IT) administration since intravenous (IV) administration cannot cross the blood brain barrier (BBB) in sufficient amounts to have a therapeutic effect. In this study, systemic and CNS distribution of rhHNS in cynomolgus monkeys following IV and IT administration was evaluated by quantitation of rhHNS in serum, cerebral spinal fluid (CSF) and various tissues, and positron emission tomography (PET) imaging of live animals. Following IV administration, rhHNS levels were low to non-detectable in the CSF, and systemic clearance was rapid (≤2 h). With IT administration, rhHNS was observable in CNS tissues in ≤1 h, with varying Tmax (1-24 h). Appreciable systemic distribution was observed up to 7 days. This provides evidence that in this animal model, intrathecal administration of rhHNS delivers the replacement enzyme to therapeutically relevant tissues for the treatment of Sanfilippo Syndrome type A. Penetration into grey matter and cortex was 3-4 times greater than concentrations in white matter and deeper parenchymal regions, suggesting some limitations of this ERT strategy.
Collapse
|
5
|
Aronovich EL, Hyland KA, Hall BC, Bell JB, Olson ER, Rusten MU, Hunter DW, Ellinwood NM, McIvor RS, Hackett PB. Prolonged Expression of Secreted Enzymes in Dogs After Liver-Directed Delivery of Sleeping Beauty Transposons: Implications for Non-Viral Gene Therapy of Systemic Disease. Hum Gene Ther 2017; 28:551-564. [PMID: 28530135 DOI: 10.1089/hum.2017.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The non-viral, integrating Sleeping Beauty (SB) transposon system is efficient in treating systemic monogenic disease in mice, including hemophilia A and B caused by deficiency of blood clotting factors and mucopolysaccharidosis types I and VII caused by α-L-iduronidase (IDUA) and β-glucuronidase (GUSB) deficiency, respectively. Modified approaches of the hydrodynamics-based procedure to deliver transposons to the liver in dogs were recently reported. Using the transgenic canine reporter secreted alkaline phosphatase (cSEAP), transgenic protein in the plasma was demonstrated for up to 6 weeks post infusion. This study reports that immunosuppression of dogs with gadolinium chloride (GdCl3) prolonged the presence of cSEAP in the circulation up to 5.5 months after a single vector infusion. Transgene expression declined gradually but appeared to stabilize after about 2 months at approximately fourfold baseline level. Durability of transgenic protein expression in the plasma was inversely associated with transient increase of liver enzymes alanine transaminase and aspartate transaminase in response to the plasmid delivery procedure, which suggests a deleterious effect of hepatocellular toxicity on transgene expression. GdCl3 treatment was ineffective for repeat vector infusions. In parallel studies, dogs were infused with potentially therapeutic transposons. Activities of transgenic IDUA and GUSB in plasma peaked at 50-350% of wildtype, but in the absence of immunosuppression lasted only a few days. Transposition was detectable by excision assay only when the most efficient transposase, SB100X, was used. Dogs infused with transposons encoding canine clotting factor IX (cFIX) were treated with GdCl3 and showed expression profiles similar to those in cSEAP-infused dogs, with expression peaking at 40% wt (2 μg/mL). It is concluded that GdCl3 can support extended transgene expression after hydrodynamic introduction of SB transposons in dogs, but that alternative regimens will be required to achieve therapeutic levels of transgene products.
Collapse
Affiliation(s)
- Elena L Aronovich
- 1 Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota , Minneapolis, Minnesota
| | | | - Bryan C Hall
- 1 Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Jason B Bell
- 1 Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Erik R Olson
- 2 Discovery Genomics, Inc. , Minneapolis, Minnesota
| | - Myra Urness Rusten
- 3 Department of Radiology, University of Minnesota , Minneapolis, Minnesota
| | - David W Hunter
- 3 Department of Radiology, University of Minnesota , Minneapolis, Minnesota
| | | | - R Scott McIvor
- 1 Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota , Minneapolis, Minnesota.,2 Discovery Genomics, Inc. , Minneapolis, Minnesota
| | - Perry B Hackett
- 1 Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota , Minneapolis, Minnesota.,2 Discovery Genomics, Inc. , Minneapolis, Minnesota
| |
Collapse
|
6
|
King B, Marshall NR, Hassiotis S, Trim PJ, Tucker J, Hattersley K, Snel MF, Jolly RD, Hopwood JJ, Hemsley KM. Slow, continuous enzyme replacement via spinal CSF in dogs with the paediatric-onset neurodegenerative disease, MPS IIIA. J Inherit Metab Dis 2017; 40:443-453. [PMID: 27832416 DOI: 10.1007/s10545-016-9994-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
Intra-cerebrospinal fluid (CSF) injection of recombinant human lysosomal enzyme is a potential treatment strategy for several neurodegenerative lysosomal storage disorders including Sanfilippo syndrome (Mucopolysaccharidosis type IIIA; MPS IIIA). Here we have utilised the MPS IIIA Huntaway dog model to compare the effectiveness of the repeated intermittent bolus injection strategy being used in the trials with an alternate approach; slow, continual infusion of replacement enzyme (recombinant human sulphamidase; rhSGSH) into the spinal CSF using a SynchroMed II® pump attached to a spinal infusion cannula. The ability of each enzyme delivery strategy to ameliorate lesions in MPS IIIA brain was determined in animals treated from ∼three- to six-months of age. Controls received buffer or no treatment. Significant reductions in heparan sulphate (primary substrate) were observed in brain samples from dogs treated via either cisternal or lumbar spinal CSF bolus injection methods and also in slow intra-spinal CSF infusion-treated dogs. The extent of the reduction differed regionally. Pump-delivered rhSGSH was less effective in reducing secondary substrate (GM3 ganglioside) in deeper aspects of cerebral cortex, and although near-amelioration of microglial activation was seen in superficial (but not deep) layers of cerebral cortex in both bolus enzyme-treated groups, pump-infusion of rhSGSH had little impact on microgliosis. While continual low-dose infusion of rhSGSH into MPS IIIA dog CSF reduces disease-based lesions in brain, it was not as efficacious as repeated cisternal or spinal CSF bolus infusion of rhSGSH over the time-frame of these experiments.
Collapse
Affiliation(s)
- Barbara King
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Neil R Marshall
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, New Zealand
| | - Sofia Hassiotis
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Paul J Trim
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Justin Tucker
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Kathryn Hattersley
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Marten F Snel
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Robert D Jolly
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, New Zealand
| | - John J Hopwood
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia.
| |
Collapse
|
7
|
King B, Hassiotis S, Rozaklis T, Beard H, Trim PJ, Snel MF, Hopwood JJ, Hemsley KM. Low-dose, continuous enzyme replacement therapy ameliorates brain pathology in the neurodegenerative lysosomal disorder mucopolysaccharidosis type IIIA. J Neurochem 2016; 137:409-22. [DOI: 10.1111/jnc.13533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara King
- Lysosomal Diseases Research Unit; South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Sofia Hassiotis
- Lysosomal Diseases Research Unit; South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Tina Rozaklis
- Lysosomal Diseases Research Unit; South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Helen Beard
- Lysosomal Diseases Research Unit; South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Paul J. Trim
- Lysosomal Diseases Research Unit; South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Marten F. Snel
- Lysosomal Diseases Research Unit; South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - John J. Hopwood
- Lysosomal Diseases Research Unit; South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Kim M. Hemsley
- Lysosomal Diseases Research Unit; South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| |
Collapse
|