1
|
Tao C, Zhao M, Zhang X, Hao J, Huo Q, Sun J, Xing J, Zhang Y, Zhao J, Huang H. Novel compound heterozygous mutations of the NPC1 gene associated with Niemann-pick disease type C: a case report and review of the literature. BMC Infect Dis 2024; 24:145. [PMID: 38291356 PMCID: PMC10826013 DOI: 10.1186/s12879-024-09025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Niemann-Pick Disease type C is a fatal autosomal recessive lipid storage disorder caused by NPC1 or NPC2 gene mutations and characterized by progressive, disabling neurological deterioration and hepatosplenomegaly. Herein, we identified a novel compound heterozygous mutations of the NPC1 gene in a Chinese pedigree. CASE PRESENTATION This paper describes an 11-year-old boy with aggravated walking instability and slurring of speech who presented as Niemann-Pick Disease type C. He had the maternally inherited c.3452 C > T (p. Ala1151Val) mutation and the paternally inherited c.3557G > A (p. Arg1186His) mutation using next-generation sequencing. The c.3452 C > T (p. Ala1151Val) mutation has not previously been reported. CONCLUSIONS This study predicted that the c.3452 C > T (p. Ala1151Val) mutation is pathogenic. This data enriches the NPC1 gene variation spectrum and provides a basis for familial genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Chaoxin Tao
- Department of Internal Medicine, Shijiazhuang Ping'an Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Zhang
- Department of Internal Medicine, Shijiazhuang Ping'an Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jihong Hao
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiuyue Huo
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Sun
- Department of Ultrasound Diagnosis of Gynecology and Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiangtao Xing
- Department of Internal Medicine, Shijiazhuang Ping'an Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuna Zhang
- Department of Internal Medicine, Shijiazhuang Ping'an Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Huaipeng Huang
- Department of Internal Medicine, Shijiazhuang Ping'an Hospital, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Guatibonza Moreno P, Pardo LM, Pereira C, Schroeder S, Vagiri D, Almeida LS, Juaristi C, Hosny H, Loh CCY, Leubauer A, Torres Morales G, Oppermann S, Iurașcu MI, Fischer S, Steinicke TM, Viceconte N, Cozma C, Kandaswamy KK, Pinto Basto J, Böttcher T, Bauer P, Bertoli-Avella A. At a glance: the largest Niemann-Pick type C1 cohort with 602 patients diagnosed over 15 years. Eur J Hum Genet 2023; 31:1108-1116. [PMID: 37433892 PMCID: PMC10545733 DOI: 10.1038/s41431-023-01408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Niemann-Pick type C1 disease (NPC1 [OMIM 257220]) is a rare and severe autosomal recessive disorder, characterized by a multitude of neurovisceral clinical manifestations and a fatal outcome with no effective treatment to date. Aiming to gain insights into the genetic aspects of the disease, clinical, genetic, and biomarker PPCS data from 602 patients referred from 47 countries and diagnosed with NPC1 in our laboratory were analyzed. Patients' clinical data were dissected using Human Phenotype Ontology (HPO) terms, and genotype-phenotype analysis was performed. The median age at diagnosis was 10.6 years (range 0-64.5 years), with 287 unique pathogenic/likely pathogenic (P/LP) variants identified, expanding NPC1 allelic heterogeneity. Importantly, 73 P/LP variants were previously unpublished. The most frequent variants detected were: c.3019C > G, p.(P1007A), c.3104C > T, p.(A1035V), and c.2861C > T, p.(S954L). Loss of function (LoF) variants were significantly associated with earlier age at diagnosis, highly increased biomarker levels, and a visceral phenotype (abnormal abdomen and liver morphology). On the other hand, the variants p.(P1007A) and p.(S954L) were significantly associated with later age at diagnosis (p < 0.001) and mildly elevated biomarker levels (p ≤ 0.002), consistent with the juvenile/adult form of NPC1. In addition, p.(I1061T), p.(S954L), and p.(A1035V) were associated with abnormality of eye movements (vertical supranuclear gaze palsy, p ≤ 0.05). We describe the largest and most heterogenous cohort of NPC1 patients published to date. Our results suggest that besides its utility in variant classification, the biomarker PPCS might serve to indicate disease severity/progression. In addition, we establish new genotype-phenotype relationships for "frequent" NPC1 variants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter Bauer
- CENTOGENE GmbH, Rostock, Germany.
- Univesrity of Rostock, Rostock, Germany.
| | | |
Collapse
|
3
|
Koto Y, Sakai N, Lee Y, Kakee N, Matsuda J, Tsuboi K, Shimozawa N, Okuyama T, Nakamura K, Narita A, Kobayashi H, Uehara R, Nakamura Y, Kato K, Eto Y. Prevalence of patients with lysosomal storage disorders and peroxisomal disorders: A nationwide survey in Japan. Mol Genet Metab 2021; 133:277-288. [PMID: 34090759 DOI: 10.1016/j.ymgme.2021.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Lysosomal storage disorders and peroxisomal disorders are rare diseases caused by the accumulation of substrates of the metabolic pathway within lysosomes and peroxisomes, respectively. Owing to the rarity of these diseases, the prevalence of lysosomal storage disorders and peroxisomal disorders in Japan is unknown. Therefore, we conducted a nationwide survey to estimate the number of patients with lysosomal storage disorders and peroxisomal disorders in Japan. METHODS A nationwide survey was conducted following the "Manual of nationwide epidemiological survey for understanding patient number and clinical epidemiology of rare diseases (3rd version)". A questionnaire asking for detailed information, such as disease phenotypes and medical history, was created and sent to 504 institutions with doctors who have experience in treating patients with lysosomal storage disorders and peroxisomal disorders. Result A total of 303 completed questionnaires were collected from 504 institutions (response rate: 60.1%). The number of patients was estimated by calculating the rate/frequency of overlap. The estimated number of patients was 1658 (±264.8) for Fabry disease, 72 (±11.3) for mucopolysaccharidosis I, 275 (±49.9) for mucopolysaccharidosis II, 211 (±31.3) for Gaucher disease, 124 (±25.8) for Pompe disease, 83 (±44.3) for metachromatic leukodystrophy, 57 (±9.4) for Niemann-Pick type C, and 262 (±42.3) for adrenoleukodystrophy. In addition the birth prevalence was calculated using the estimated number of patients and birth year data for each disease, and was 1.25 for Fabry disease, 0.09 for mucopolysaccharidosis I, 0.38 for mucopolysaccharidosis II, 0.19 for Gaucher disease, 0.14 for Pompe disease, 0.16 for metachromatic leukodystrophy, 0.16 for Niemann-Pick type C, and 0.20 for adrenoleukodystrophy. DISCUSSION Among the diseases analyzed, the disease with the highest prevalence was Fabry disease, followed by mucopolysaccharidosis II, adrenoleukodystrophy, Gaucher disease and metachromatic leukodystrophy. In particular, the high prevalence of mucopolysaccharidosis II and Gaucher disease type II was a feature characteristic of Japan. CONCLUSION We estimated the number of patients with lysosomal storage disorders and peroxisomal disorders in Japan. The details of the age at diagnosis and treatment methods for each disease were clarified, and will be useful for the early diagnosis of these patients and to provide appropriate treatments. Furthermore, our results suggest that supportive care and the development of an environment that can provide optimal medical care is important in the future.
Collapse
Affiliation(s)
- Yuta Koto
- Child Healthcare and Genetic Science Laboratory, Department of Children and Women's Health, Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Norio Sakai
- Child Healthcare and Genetic Science Laboratory, Department of Children and Women's Health, Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Yoko Lee
- Child Healthcare and Genetic Science Laboratory, Department of Children and Women's Health, Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoko Kakee
- Division of Bioethics, National Center for Child Health and Development, Tokyo, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Okayama, Japan
| | - Kazuya Tsuboi
- Lysosomal Storage Diseases Center, Nagoya Central Hospital, Nagoya, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Torayuki Okuyama
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, Tokyo, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Aya Narita
- Division of Child Neurology, Institute of Neurological Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Ritei Uehara
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Koji Kato
- Central Japan Cord Blood Bank, Aichi Red Cross Blood Center, Aichi, Japan
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Southern Tohoku Research Center for Neuroscience, Kanagawa, Japan
| |
Collapse
|
4
|
Seker Yilmaz B, Baruteau J, Rahim AA, Gissen P. Clinical and Molecular Features of Early Infantile Niemann Pick Type C Disease. Int J Mol Sci 2020; 21:E5059. [PMID: 32709131 PMCID: PMC7404201 DOI: 10.3390/ijms21145059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Niemann Pick disease type C (NPC) is a neurovisceral disorder due to mutations in NPC1 or NPC2. This review focuses on poorly characterized clinical and molecular features of early infantile form of NPC (EIF) and identified 89 cases caused by NPC1 (NPC1) and 16 by NPC2 (NPC2) mutations. Extra-neuronal features were common; visceromegaly reported in 80/89 NPC1 and in 15/16 NPC2, prolonged jaundice in 30/89 NPC1 and 7/16 NPC2. Early lung involvement was present in 12/16 NPC2 cases. Median age of neurological onset was 12 (0-24) and 7.5 (0-24) months in NPC1 and NPC2 groups, respectively. Developmental delay and hypotonia were the commonest first detected neurological symptoms reported in 39/89 and 18/89 NPC1, and in 8/16 and 10/16 NPC2, respectively. Additional neurological symptoms included vertical supranuclear gaze palsy, dysarthria, cataplexy, dysphagia, seizures, dystonia, and spasticity. The following mutations in homozygous state conferred EIF: deletion of exon 1+promoter, c.3578_3591 + 9del, c.385delT, p.C63fsX75, IVS21-2delATGC, c. 2740T>A (p.C914S), c.3584G>T (p.G1195V), c.3478-6T>A, c.960_961dup (p.A321Gfs*16) in NPC1 and c.434T>A (p.V145E), c.199T>C (p.S67P), c.133C>T (p.Q45X), c.141C>A (p.C47X) in NPC2. This comprehensive analysis of the EIF type of NPC will benefit clinical patient management, genetic counselling, and assist design of novel therapy trials.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.B.); (P.G.)
- Department of Paediatric Metabolic Medicine, Mersin University, Mersin 33110, Turkey
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.B.); (P.G.)
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.B.); (P.G.)
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
5
|
Musalkova D, Majer F, Kuchar L, Luksan O, Asfaw B, Vlaskova H, Storkanova G, Reboun M, Poupetova H, Jahnova H, Hulkova H, Ledvinova J, Dvorakova L, Sikora J, Jirsa M, Vanier MT, Hrebicek M. Transcript, protein, metabolite and cellular studies in skin fibroblasts demonstrate variable pathogenic impacts of NPC1 mutations. Orphanet J Rare Dis 2020; 15:85. [PMID: 32248828 PMCID: PMC7132889 DOI: 10.1186/s13023-020-01360-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Background Niemann-Pick type C (NP-C) is a rare neurovisceral genetic disorder caused by mutations in the NPC1 or the NPC2 gene. NPC1 is a multipass-transmembrane protein essential for egress of cholesterol from late endosomes/lysosomes. To evaluate impacts of NPC1 mutations, we examined fibroblast cultures from 26 NP-C1 patients with clinical phenotypes ranging from infantile to adult neurologic onset forms. The cells were tested with multiple assays including NPC1 mRNA expression levels and allele expression ratios, assessment of NPC1 promoter haplotypes, NPC1 protein levels, cellular cholesterol staining, localization of the mutant NPC1 proteins to lysosomes, and cholesterol/cholesteryl ester ratios. These results were correlated with phenotypes of the individual patients. Results Overall we identified 5 variant promoter haplotypes. Three of them showed reporter activity decreased down to 70% of the control sequence. None of the haplotypes were consistently associated with more severe clinical presentation of NP-C. Levels of transcripts carrying null NPC1 alleles were profoundly lower than levels of the missense variants. Low levels of the mutant NPC1 protein were identified in most samples. The protein localised to lysosomes in cultures expressing medium to normal NPC1 levels. Fibroblasts from patients with severe infantile phenotypes had higher cholesterol levels and higher cholesterol/cholesteryl ester ratios. On the contrary, cell lines from patients with juvenile and adolescent/adult phenotypes showed values comparable to controls. Conclusion No single assay fully correlated with the disease severity. However, low residual levels of NPC1 protein and high cholesterol/cholesteryl ester ratios associated with severe disease. The results suggest not only low NPC1 expression due to non-sense mediated decay or low mutant protein stability, but also dysfunction of the stable mutant NPC1 as contributors to the intracellular lipid transport defect.
Collapse
Affiliation(s)
- Dita Musalkova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Filip Majer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic.
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Ondrej Luksan
- Laboratory of Experimental Hepatology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Befekadu Asfaw
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Hana Vlaskova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Gabriela Storkanova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Martin Reboun
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Helena Poupetova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Helena Jahnova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Helena Hulkova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Jana Ledvinova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Lenka Dvorakova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Jakub Sikora
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Milan Jirsa
- Laboratory of Experimental Hepatology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marie T Vanier
- INSERM U820, Lyon, France.,Laboratoire Gillet-Mérieux, Lyon University Hospitals (HCL), Lyon, France
| | - Martin Hrebicek
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic.
| |
Collapse
|
6
|
Molecular Genetics of Niemann-Pick Type C Disease in Italy: An Update on 105 Patients and Description of 18 NPC1 Novel Variants. J Clin Med 2020; 9:jcm9030679. [PMID: 32138288 PMCID: PMC7141276 DOI: 10.3390/jcm9030679] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disorder caused by mutations in NPC1 or NPC2 genes. In 2009, the molecular characterization of 44 NPC Italian patients has been published. Here, we present an update of the genetic findings in 105 Italian NPC patients belonging to 83 unrelated families (77 NPC1 and 6 NPC2). NPC1 and NPC2 genes were studied following an algorithm recently published. Eighty-four different NPC1 and five NPC2 alleles were identified. Only two NPC1 alleles remained non detected. Sixty-two percent of NPC1 alleles were due to missense variants. The most frequent NPC1 mutation was the p.F284Lfs*26 (5.8% of the alleles). All NPC2 mutations were found in the homozygous state, and all but one was severe. Among newly diagnosed patients, 18 novel NPC1 mutations were identified. The pathogenic nature of 7/9 missense alleles and 3/4 intronic variants was confirmed by filipin staining and NPC1 protein analysis or mRNA expression in patient’s fibroblasts. Taken together, our previous published data and new results provide an overall picture of the molecular characteristics of NPC patients diagnosed so far in Italy.
Collapse
|
7
|
Dimitriou E, Paschali E, Kanariou M, Michelakakis H. Prevalence of antibodies to ganglioside and Hep 2 in Gaucher, Niemann - Pick type C and Sanfilippo diseases. Mol Genet Metab Rep 2019; 20:100477. [PMID: 31194046 PMCID: PMC6554541 DOI: 10.1016/j.ymgmr.2019.100477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/02/2022] Open
Abstract
Lysosomal Storage Diseases (LSDs) are rare genetic diseases, the majority of which are caused by specific lysosomal enzyme deficiencies and all are characterized by malfunctioning lysosomes. Lysosomes are key regulators of many different cellular processes and are vital for the function of the immune system. Several studies have shown the coexistence of LSDs and immune abnormalities. In this study, we investigated the presence of autoantibodies in the plasma of patients with Gaucher disease (GD; n = 6), Sanfilippo Syndrome B (SFB; n = 8) and Niemann - Pick type C disease (NPC; n = 5) before and following Miglustat treatment (n = 3). All were examined for antibodies to antigens of Hep-2 cells and antiganglioside antibodies (AGSA). No autoantibodies were detected in GD patients. 3/8 SFB patients showed only AGSA (2/3 IgM / IgG; 1/3 IgG), 3/8 only anti-Sm E/F and 2/8 showed both IgM / IgG or IgG AGSA and anti-Sm E/F. 3/5 NPC patients showed AGSA (2/3 IgM and IgG, 1/3 IgM) and one anti-Sm E/F and IgM AGSA. Following treatment one patient with no AGSA developed IgM AGSA and two with both IgG and IgM showed only IgG AGSA. In our study, investigating similar numbers of patients, autoantibodies were observed in NPC and SFB patients but not in GD patients. Our findings suggest that, independently of the development of an autoimmune disease in patients with LSDs, there seems to be an autoimmune activation that differs in different disorders. Further studies including more patients, also at different stages of disease and treatment, are needed in order to get further insight into the immune irregularities associated with different LSDs and their significance.
Collapse
Key Words
- AGSA, Antiganglioside antibodies
- AMA-M2, antimitochondrial antibodies to M2 antigen
- Autoimmunity
- GD, Gaucher disease
- Gaucher disease
- Immunoglobulins
- Jo-1, Histidyl-tRNA synthetase antigen
- Ku:Ku antigen(p70/p80)CENP A,B,C, Centromere proteins A,B,C
- LSDs, Lysosomal storage diseases
- NPC, Niemann Pick type C disease
- Niemann pick type C disease
- PM-Scl-70, Polymyositis - Scleroderma-70
- RNP, ribonucleoprotein
- SFB, Sanfilippo B syndrome
- SS-A, Sjögren's antigen A
- SS-B, Sjögren's syndrome antigen B
- Sanfilippo B syndrome
- Scl-70, Scleroderma-70
- Sm, Smith antigen (B,B′,D,E,F,G proteins)
- rib-P-Protein, Ribosomal P protein
Collapse
Affiliation(s)
- Evangelia Dimitriou
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - Evangelia Paschali
- Department of Immunology and Histocompatibility Specialized Center & Referral Center for Primary Immunodeficiencies, Paediatric Immunology, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Maria Kanariou
- Department of Immunology and Histocompatibility Specialized Center & Referral Center for Primary Immunodeficiencies, Paediatric Immunology, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Helen Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| |
Collapse
|
8
|
Petukh M, Zhulin IB. Comparative study of the effect of disease causing and benign mutations in position Q92 on cholesterol binding by the NPC1 n-terminal domain. Proteins 2018; 86:1165-1175. [PMID: 30183109 DOI: 10.1002/prot.25597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 11/06/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein is a large transmembrane protein located in lysosomes/endosomes. NPC1 binds cholesterol (CLR) and transports it to cellular membrane and endoplasmic reticulum. Mutations in NPC1 cause Niemann-Pick type C (NPC) disease, a rare autosomal disorder characterized by intracellular accumulations of CLR and subsequent neurodegeneration leading to premature death. Among known disease-causing mutations in NPC1, Q92R is the one that is located in the N-terminal cholesterol-binding domain [NTD]. Here we study the effect of the mutation on the ability of NPC1 (NTD) to bind and retain CLR in the binding pocket using structural analysis. We compare characteristics of the Q92R and Q92S mutant type (MT) protein, which is predicted to be benign. We provide detailed investigation of the CLR-NPC1 (NTD) binding process; and propose the mechanism, by which Q92R mutation causes NPC disease. We show that although Q92 residue neither directly participates in catalytic activity of the NPC1 (NTD), nor defines its CLR-binding specificity - it is important for the overall protein structure as well as for providing favorable electrostatic environment for CLR transfer. Our results suggest that a negative electrostatic potential of the CLR binding site (the S-opening) might promote NPC2 interaction with NPC1 (NTD) and/or proper CLR orientation and its enforced transfer. We show that in contrast to the benign Q92S mutation, Q92R significantly reduces electrostatic potential around S-opening, and thus likely affects NPC1 (NTD)-NPC2 interaction and/or CLR transfer from NPC2 to NPC1.
Collapse
Affiliation(s)
- Marharyta Petukh
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee.,Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Igor B Zhulin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee.,Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.,Center for Bioinformatics, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| |
Collapse
|
9
|
Gupta DK, Blanco-Palmero VA, Chung WK, Kuo SH. Abnormal Vertical Eye Movements as a Clue for Diagnosis of Niemann-Pick Type C. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2018; 8:560. [PMID: 29971198 PMCID: PMC6026281 DOI: 10.7916/d8xs7bgd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 12/01/2022]
Abstract
Background Adult-onset Niemann–Pick Type C is a rare neurogenetic lysosomal disorder, whose diagnosis is often delayed and missed because of its heterogeneous clinical presentations and rarity as well as the lack of awareness of characteristic eye findings among neurologists. Phenomenology Shown Impaired smooth pursuits, saccades, and optokinetic nystagmus in the vertical direction, with relatively normal eye movements in the horizontal direction, and ataxia features on finger chase testing, tandem walking, and gait ataxia. Educational Value Impairment of vertical eye movements in combination with ataxia, cognitive impairment, and/or psychiatric symptoms in an adult patient should always raise clinical suspicion of Niemann–Pick Type C.
Collapse
Affiliation(s)
- Deepak K Gupta
- Department of Neurology, Columbia University, New York, NY, USA
| | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Bountouvi E, Papadopoulou A, Vanier MT, Nyktari G, Kanellakis S, Michelakakis H, Dinopoulos A. Novel NPC1 mutations with different segregation in two related Greek patients with Niemann-Pick type C disease: molecular study in the extended pedigree and clinical correlations. BMC MEDICAL GENETICS 2017; 18:51. [PMID: 28472934 PMCID: PMC5415950 DOI: 10.1186/s12881-017-0409-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 04/19/2017] [Indexed: 01/27/2023]
Abstract
BACKGROUND Niemann-Pick type C disease (NPC) is an autosomal recessive, neurovisceral, lysosomal storage disorder with protean and progressive clinical manifestations, resulting from mutations in either of the two genes, NPC1 (~95% of families) and NPC2. Contrary to other populations, published evidence regarding NPC disease in Greece is sparse. METHODS The study population consisted of two Greek NPC patients and their extended pedigree. Patients' clinical, biochemical, molecular profiles and the possible correlations are presented. Genotyping was performed by direct sequencing. Mutations' origin was investigated through selected exonic NPC1 polymorphisms encountered more frequently in a group of 37 Greek patients with clinical suspicion of NPC disease and in a group of 90 healthy Greek individuals, by the use of Haplore software. RESULTS Two novel NPC1 mutations, [IVS23 + 3insT (c.3591 + 3insT) and p. K1057R (c.3170A > C)] were identified and each mutation was associated with a specific haplotype. One of the patients was entered to early treatment with miglustat and has presented no overt neurological impairment after 11.5 years. CONCLUSIONS The splicing mutation IVS23 + 3insT was associated in homozygocity with a severe biochemical and clinical phenotype. A possible founder effect for this mutation was demonstrated in the Greek Island, as well as a different origin for each novel mutation. Longitudinal follow-up may contribute to clarify the possible effect of early miglustat therapy on the patient compound heterozygous for the two novel mutations.
Collapse
Affiliation(s)
- Evangelia Bountouvi
- Third Department of Pediatrics, Athens University Medical School, University General Hospital "Attikon", 1 Rimini Str, 12464 -Haidari, Athens, Greece
| | - Anna Papadopoulou
- Third Department of Pediatrics, Athens University Medical School, University General Hospital "Attikon", 1 Rimini Str, 12464 -Haidari, Athens, Greece.
| | - Marie T Vanier
- Laboratoire Gillet-Mérieux, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Georgia Nyktari
- Third Department of Pediatrics, Athens University Medical School, University General Hospital "Attikon", 1 Rimini Str, 12464 -Haidari, Athens, Greece
| | - Spyridon Kanellakis
- Department of Nutrition and Dietetics, Harokopio University, Kallithea, Athens, Greece
| | - Helen Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - Argyrios Dinopoulos
- Third Department of Pediatrics, Athens University Medical School, University General Hospital "Attikon", 1 Rimini Str, 12464 -Haidari, Athens, Greece
| |
Collapse
|