1
|
Altememy D, Kashani MHG, Fateme A, Khosravian P. New method to induce neurotrophin gene expression in human adipose-derived stem cells in vitro. J Adv Pharm Technol Res 2024; 15:214-219. [PMID: 39290551 PMCID: PMC11404434 DOI: 10.4103/japtr.japtr_390_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 09/19/2024] Open
Abstract
Rosemary leaf extract, a well-known medicinal plant, can induce neurotrophin gene expression and proliferation in stem cells. Human adipose-derived stem cells (hASCs) with high proliferation and differentiation capacity are easily accessible and can be extracted with the least damage. This study evaluated the effect of rosemary extract (RE) on neurotrophin gene expression at 48 h postinduction in hASCs. hASCs were isolated from healthy female donors, aged 28-35 years, who had undergone abdominal liposuction. Passage-4 stem cells were cultured and treated with different doses of RE (from 30 to 70 µg/ml) containing 40% carnosic acid for 48 h. Reverse transcription-polymerase chain reaction was used to check the expression of neurotrophin genes. The expression of NTF3, NTF4, and nerve growth factor genes in cells treated with 40-60 µg/ml and the expression of GDNF in cells treated with 50-70 µg/ml of RE for 48 h showed a significant increase compared to cells cultured in serum-containing medium. However, different doses of RE showed no effect on brain-derived neurotrophic factor gene expression in the treated cells. RE (50, 60 µg/ml) leads to an increase of neurotrophin gene expression in hASCs as compared to routine cell culture. Hence, this protocol can be used to prepare ideal cell sources for cell therapy.
Collapse
Affiliation(s)
- Dhiya Altememy
- Department of Pharmaceutics, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Maryam Haji Ghasem Kashani
- Department of Cellular and Molecular Biology, School of Biology, Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Amirahmadi Fateme
- Department of Cellular and Molecular Biology, School of Biology, Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Aytekin E, Vurat MT, Elçin AE, Elçin YM. Decellularized Bone Matrix/45S5 Bioactive Glass Biocomposite Hydrogel-Based Constructs with Angiogenic and Osteogenic Properties: Ex Ovo and Ex Vivo Evaluations. Macromol Biosci 2024; 24:e2300295. [PMID: 38102878 DOI: 10.1002/mabi.202300295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Decellularized extracellular matrix is often used to create an in vivo-like environment that supports cell growth and proliferation, as it reflects the micro/macrostructure and molecular composition of tissues. On the other hand, bioactive glasses (BG) are surface-reactive glass-ceramics that can convert to hydroxyapatite in vivo and promote new bone formation. This study is designed to evaluate the key properties of a novel angiogenic and osteogenic biocomposite graft made of bovine decellularized bone matrix (DBM) hydrogel and 45S5 BG microparticles (10 and 20 wt%) to combine the existing superior properties of both biomaterial classes. Morphological, physicochemical, mechanical, and thermal characterizations of DBM and DBM/BG composite hydrogels are performed. Their in vitro biocompatibility is confirmed by cytotoxicity and hemocompatibility analyses. Ex vivo chick embryo aortic arch and ex ovo chick chorioallantoic membrane (CAM) assays reveal that the present pro-angiogenic property of DBM hydrogels is enhanced by the incorporation of BG. Histochemical stainings (Alcian blue and Alizarin red) and digital image analysis of ossification on hind limbs of embryos used in the CAM model reveal the osteogenic potential of biomaterials. The findings support the notion that the developed DBM/BG composite hydrogel constructs have the potential to be a suitable graft for bone repair.
Collapse
Affiliation(s)
- Ekin Aytekin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
| | - Murat Taner Vurat
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
- Biovalda Health Technologies, Inc., Ankara, 06830, Turkey
| |
Collapse
|
3
|
Lalegül-Ülker Ö, Şeker Ş, Elçin AE, Murat Elçin Y. Encapsulation of MSCs in PRP-Derived Fibrin Microbeads. Methods Mol Biol 2024; 2736:85-93. [PMID: 37219812 DOI: 10.1007/7651_2023_484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Platelet-rich plasma (PRP) is a highly concentrated platelet-containing blood plasma that incorporates a significant amount of growth factors and cytokines needed to accelerate the tissue repair process. PRP has been used effectively for many years in the treatment of various wounds by direct injection into the target tissue or impregnation with scaffold or graft materials. Since autologous PRP can be obtained by simple centrifugation, it is an attractive and inexpensive product for use in repairing damaged soft tissues. Cell-based regenerative approaches, which draw attention in the treatment of tissue and organ injuries, are based on the principle of delivering stem cells to damaged sites by various means, including encapsulation. Current biopolymers used in cell encapsulation have some advantages with some limitations. By adjusting its physicochemical properties, PRP-derived fibrin can become an efficient matrix material for encapsulating stem cells. This chapter covers the fabrication protocol of PRP-derived fibrin microbeads and their use to encapsulate stem cells as a general bioengineering platform for prospective regenerative medical applications.
Collapse
Affiliation(s)
- Özge Lalegül-Ülker
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Şükran Şeker
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Ayşe Eser Elçin
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Yaşar Murat Elçin
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
- Biovalda Health Technologies, Inc., Ankara, Turkey
| |
Collapse
|
4
|
Abstract
The low regenerative potential of the human body hinders proper regeneration of dysfunctional or lost tissues and organs due to trauma, congenital defects, and diseases. Tissue or organ transplantation has hence been a major conventional option for replacing the diseased or dysfunctional body parts of the patients. In fact, a great number of patients on waiting lists would benefit tremendously if tissue and organs could be replaced with biomimetic spare parts on demand. Herein, regenerative medicine and advanced biomaterials strive to reach this distant goal. Tissue engineering aims to create new biological tissue or organ substitutes, and promote regeneration of damaged or diseased tissue and organs. This approach has been jointly evolving with the major advances in biomaterials, stem cells, and additive manufacturing technologies. In particular, three-dimensional (3D) bioprinting utilizes 3D printing to fabricate viable tissue-like structures (perhaps organs in the future) using bioinks composed of special hydrogels, cells, growth factors, and other bioactive contents. A third generation of multifunctional biomaterials could also show opportunities for building biomimetic scaffolds, upon which to regenerate stem cells in vivo. Besides, decellularization technology based on isolation of extracellular matrix of tissue and organs from their inhabiting cells is presented as an alternative to synthetic biomaterials. Today, the gained knowledge of functional microtissue engineering and biointerfaces, along with the remarkable advances in pluripotent stem cell technology, seems to be instrumental for the development of more realistic microphysiological 3D in vitro tissue models, which can be utilized for personalized disease modeling and drug development. This chapter will discuss the recent advances in the field of regenerative medicine and biomaterials, alongside challenges, limitations, and potentials of the current technologies.
Collapse
Affiliation(s)
- Şükran Şeker
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Ayşe Eser Elçin
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Yaşar Murat Elçin
- Ankara University Faculty of Science, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey.
- Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
5
|
Decellularized tendon-based heparinized nanocomposite scaffolds for prospective regenerative applications: Chemical, physical, thermal, mechanical and in vitro biological evaluations. J Mech Behav Biomed Mater 2022; 134:105387. [DOI: 10.1016/j.jmbbm.2022.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022]
|
6
|
Ergun C, Parmaksiz M, Vurat MT, Elçin AE, Elçin YM. Decellularized liver ECM-based 3D scaffolds: Compositional, physical, chemical, rheological, thermal, mechanical, and in vitro biological evaluations. Int J Biol Macromol 2022; 200:110-123. [PMID: 34971643 DOI: 10.1016/j.ijbiomac.2021.12.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) is involved in many critical cellular interactions through its biological macromolecules. In this study, a macroporous 3D scaffold originating from decellularized bovine liver ECM (dL-ECM), with defined compositional, physical, chemical, rheological, thermal, mechanical, and in vitro biological properties was developed. First, protocols were determined that effectively remove cells and DNA while ECM retains biological macromolecules collagen, elastin, sGAGs in tissue. Rheological analysis revealed the elastic properties of pepsin-digested dL-ECM. Then, dL-ECM hydrogel was neutralized, molded, formed into macroporous (~100-200 μm) scaffolds in aqueous medium at 37 °C, and lyophilized. The scaffolds had water retention ability, and were mechanically stable for at least 14 days in the culture medium. The findings also showed that increasing the dL-ECM concentration from 10 mg/mL to 20 mg/mL resulted in a significant increase in the mechanical strength of the scaffolds. The hemolysis test revealed high in vitro hemocompatibility of the dL-ECM scaffolds. Studies investigating the viability and proliferation status of human adipose stem cells seeded over a 2-week culture period have demonstrated the suitability of dL-ECM scaffolds as a cell substrate. Prospective studies may reveal the extent to which 3D dL-ECM sponges have the potential to create a biomimetic environment for cells.
Collapse
Affiliation(s)
- Can Ergun
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Stem Cell Institute, Ankara, Turkey
| | - Mahmut Parmaksiz
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Stem Cell Institute, Ankara, Turkey
| | - Murat Taner Vurat
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Stem Cell Institute, Ankara, Turkey; Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
7
|
Ercan H, Elçin AE, Elçin YM. Preliminary assessment of an injectable extracellular matrix from decellularized bovine myocardial tissue. ACTA ACUST UNITED AC 2021; 76:491-501. [PMID: 34043893 DOI: 10.1515/znc-2021-0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
Abstract
The goal of this study was to develop an injectable form of decellularized bovine myocardial tissue matrix which could retain high levels of functional ECM molecules, and could gel at physiological temperature. Dissected ventricular tissue was processed by a detergent-based protocol, lyophilized, enzymatically-digested, and neutralized to form the injectable myocardial matrix (IMM). Histochemical analysis, DNA quantification, and agarose gel electrophoresis demonstrated the efficiency of the applied protocol. Chemical, thermal, morphological, and rheological characterization; protein and sulfated glycosaminoglycan (sGAG) content analysis were performed, in vitro biological properties were evaluated. An in vivo histocompatibility and biodegradability study was performed. Histochemistry revealed complete removal of myocardial cells. DNA content analysis revealed a significant decrease (87%) in the nuclear material, while protein and sGAG contents were highly preserved following decellularization. Soluble IMM was capable of turning into gel form at ∼37 °C, indicating selfassembling property. In vitro findings showed the biomaterial was noncytotoxic, nonhemolytic, and supported the attachment and proliferation of mesenchymal stem cells. In vivo study demonstrated IMM was well-tolerated by rats receiving subcutaneous injection. This work demonstrates that the IMM from decellularized bovine myocardial tissue has the potential for use as a feasible regenerative biomaterial in prospective tissue engineering and regenerative medicine studies.
Collapse
Affiliation(s)
- Hatice Ercan
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
- Department of Chemistry, Kamil Özdag Faculty of Science, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
- Biovalda Health Technologies, Inc., Ankara, Turkey
| |
Collapse
|
8
|
Decellularized biological scaffold and stem cells from autologous human adipose tissue for cartilage tissue engineering. Methods 2019; 171:97-107. [PMID: 31051252 DOI: 10.1016/j.ymeth.2019.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/05/2019] [Accepted: 04/27/2019] [Indexed: 02/08/2023] Open
Abstract
Here, the in vitro engineering of a cartilage-like tissue by using decellularized extracellular matrix scaffold (hECM) seeded with human adipose stem cells (hASCs) which can both be isolated from the human waste adipose tissue is described. Cell-free, highly fibrous and porous hECM was produced using a protocol containing physical (homogenization, centrifugation, molding) and chemical (crosslinking) treatments, characterized by SEM, histochemistry, immunohistochemistry and in vitro cell interaction study. A construct of hECM seeded with hASCs was cultured in chondrogenic medium (with TGF-β3 and BMP-6) for 42 days. SEM and histology showed that the biological scaffold was highly porous and had a compact structure suitable for handling and subsequent cell culture stages. Cells successfully integrated into the scaffold and had good cellular viability and continuity to proliferate. Constructs showed the formation of cartilage-like tissue with the synthesis of cartilage-specific proteins, Collagen type II and Aggrecan. Dimethylmethylene blue dye binding assay demonstrated that the GAG content of the constructs was in tendency to increase with time confirming chondrogenic differentiation of hASCs. The results support that human waste adipose tissue is an important source for decellularized hECM as well as stem cells, and adipose hECM scaffold provides a suitable environment for chondrogenic differentiation of hASCs.
Collapse
|
9
|
Selection of Suitable Reference Genes for Quantitative Real-Time PCR Normalization in Human Stem Cell Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:151-168. [PMID: 30267307 DOI: 10.1007/5584_2018_277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely utilized method for evaluating the gene expressions in stem cell research. This method enables researchers to obtain fast and precise results, but the accuracy of the data depends on certain factors, such as those associated with biological sample preparation and PCR efficiency. In order to achieve accurate and reliable results, it is of utmost importance to designate the reference genes, the expressions of which are suitable to all kinds of experimental conditions. Hence it is vital to normalize the qRT-PCR data by using the reference genes. In recent years, it has been found that the expression levels of reference genes widely used in stem cell research present a substantial amount of variation and are not necessarily suitable for normalization. This chapter at hand stresses the significance of selecting suitable reference genes from the point view of human stem cell research.
Collapse
|
10
|
Clinical Applications of Injectable Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:163-182. [DOI: 10.1007/978-981-13-0947-2_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Lalegül-Ülker Ö, Elçin AE, Elçin YM. Intrinsically Conductive Polymer Nanocomposites for Cellular Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:135-153. [PMID: 30357622 DOI: 10.1007/978-981-13-0950-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intrinsically conductive polymer nanocomposites have a remarkable potential for cellular applications such as biosensors, drug delivery systems, cell culture systems and tissue engineering biomaterials. Intrinsically conductive polymers transmit electrical stimuli between cells, and induce regeneration of electroactive tissues such as muscle, nerve, bone and heart. However, biocompatibility and processability are common issues for intrinsically conductive polymers. Conductive polymer composites are gaining importance for tissue engineering applications due to their excellent mechanical, electrical, optical and chemical functionalities. Here, we summarize the different types of intrinsically conductive polymers containing electroactive nanocomposite systems. Cellular applications of conductive polymer nanocomposites are also discussed focusing mainly on poly(aniline), poly(pyrrole), poly(3,4-ethylene dioxythiophene) and poly(thiophene).
Collapse
Affiliation(s)
- Özge Lalegül-Ülker
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Stem Cell Institute, Ankara University, Ankara, Turkey. .,Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
12
|
Abstract
Tissue engineering-based regenerative applications can involve the use of stem cells for the treatment of non-healing wounds. Multipotent mesenchymal stem cells have become a focus of skin injury treatments along with many other injury types owing to their unprecedented advantages. However, there are certain limitations concerning the solo use of stem cells in skin wound repair. Natural bioactive extracellular matrix-based scaffolds have great potential for overcoming these limitations by supporting the regenerative activity and localization of stem cells. This chapter describes the use of bone marrow mesenchymal stem cells together with decellularized bovine small intestinal submucosa (SIS), for the treatment of a critical-sized full-thickness skin defect in a small animal model.
Collapse
|
13
|
Koç A, Elçin AE, Elçin YM. Ectopic osteogenic tissue formation by MC3T3-E1 cell-laden chitosan/hydroxyapatite composite scaffold. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1440-7. [DOI: 10.3109/21691401.2015.1036998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Aysel Koç
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| |
Collapse
|
14
|
Evaluation of a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering:In vitroandin vivostudies. Biointerphases 2014; 9:029011. [DOI: 10.1116/1.4870781] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Emin N, Koç A, Durkut S, Elçin AE, Elçin YM. Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture. ACTA ACUST UNITED AC 2008; 36:123-37. [PMID: 18437589 DOI: 10.1080/10731190801932116] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The objective of this study was to develop an engineered rat hyaline cartilage by culturing articular chondrocytes on three-dimensional (3D) macroporous poly(DL-lactic-co-glycolic acid) (PLGA) sponges under chondrogenic induction and microgravity bioreactor conditions. Experimental groups consisted of 3D static and dynamic cultures, while a single cell monolayer (2D) served as the control. The effect of seeding conditions (static vs. dynamic) on cellularization of the scaffolds was investigated. MTT assay was used to evaluate the number of viable cells in each group at different time points. Formation of a hyaline-like cartilage was evaluated for up to 4 weeks in vitro. While 2D culture resulted in cell sheets with very poor matrix production, 3D culture was in the favor of tissue formation. A higher yield of cell attachment and spatially uniform cell distribution was achieved when dynamic seeding technique was used. Dynamic culture promoted cell growth and infiltration throughout the sponge structure and showed the formation of cartilage tissue, while chondrogenesis appeared attenuated more towards the outer region of the constructs in the static culture group. Medium supplemented with TGF-beta 1 (5 ng/ml) had a positive impact on proteoglycan production as confirmed by histochemical analyses with Alcian blue and Safranin-O stainings. Formation of hyaline-like tissue was demonstrated by immunohistochemistry performed with antibodies against type II collagen and aggrecan. SEM confirmed higher level of cellularization and cartilage tissue formation in bioreactor cultures induced by TGF-beta 1. The data suggest that PLGA sponge inside rotating bioreactor with chondrogenic medium provides an environment that mediates isolated rat chondrocytes to redifferentiate and form hyaline-like rat cartilage, in vitro.
Collapse
Affiliation(s)
- Nuray Emin
- Ankara University, Faculty of Science and Biotechnology Institute, Tissue Engineering and Biomaterials Laboratory, Ankara, Turkey
| | | | | | | | | |
Collapse
|
16
|
Petrigliano FA, McAllister DR, Wu BM. Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy 2006; 22:441-51. [PMID: 16581458 DOI: 10.1016/j.arthro.2006.01.017] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 01/30/2006] [Accepted: 01/30/2006] [Indexed: 02/06/2023]
Abstract
The anterior cruciate ligament (ACL) is one the most commonly injured ligaments of the knee. Chronic ACL insufficiency can result in episodic instability, chondral and meniscal injury, and early osteoarthritis. The intra-articular environment of the ligament precludes normal healing and surgical replacement of the injured ligament is often mandated to restore stability. Current surgical strategies include the use of local autograft or allograft tissues for ligament reconstruction. These procedures have yielded superior long-term clinical results yet have the potential for serious associated morbidities. Existing limitations have prompted ongoing research designed to engineer a replacement ligament that will parallel the native ACL in both its biologic properties and mechanical durability. Ligament engineering necessitates the use of appropriate source cells and a growth matrix to support cell proliferation and collagen synthesis. The identification of appropriate growth modulators including both biochemical factors and mechanical stimuli are requisites for successful tissue growth. The characterization of the elements essential for successful graft development represents a significant challenge for investigators. This review examines the current literature regarding the potential and limitations of ligament engineering and describes the development of a novel 3-dimensional scaffold and bioreactor system at our institution.
Collapse
Affiliation(s)
- Frank A Petrigliano
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90232, USA
| | | | | |
Collapse
|
17
|
|