1
|
Krivonogova AS, Bruter AV, Makutina VA, Okulova YD, Ilchuk LA, Kubekina MV, Khamatova AY, Egorova TV, Mymrin VS, Silaeva YY, Deykin AV, Filatov MA, Isaeva AG. AAV infection of bovine embryos: Novel, simple and effective tool for genome editing. Theriogenology 2022; 193:77-86. [PMID: 36156427 DOI: 10.1016/j.theriogenology.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
Adeno-associated viruses (AAV) are widely used in the field of genetically modified organism production. In this work, transduction of bovine embryos by AAV was selected as a potential approach to perform genetic modifications: we have used recombinant AAV to produce GFP-positive bovine embryos. Five different AAV serotypes were used to evaluate their ability to deliver genetic material into the bovine embryos. AAV9 serotype demonstrated minimal effectiveness (38,10%) as the genetic material transfer tool. Four other serotypes of AAVs (AAV1, AAV2, AAV6 and AAV-DJ) showed very close transduction efficiency (52,94-58,33%). CD209 is a C-type lectin receptor which is presented on the surface of macrophages and dendritic cells. CD209 recognizes a broad range of pathogens in a rather nonspecific manner. Production of CD209 knock-out is relevant for better understanding of infection mechanisms. Potentially, production of such knock-out may enable animals to become resistant to various infections. We have analyzed DNA samples from 22 blastocysts obtained after in vitro culture of zygotes subjected to recombinant AAV action. We have detected that 3 of 22 analyzed blastocysts contained mosaic CD209 frameshifts. Therefore, we have demonstrated proof of principle that application of AAV as a genome editing tool is an effective method for obtaining genetically modified cattle embryos.
Collapse
Affiliation(s)
- Anna S Krivonogova
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Valeria A Makutina
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuliya D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Leonid A Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina V Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexandra Yu Khamatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Sochi, 354340, Russia
| | - Vladimir S Mymrin
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuliya Yu Silaeva
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey V Deykin
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Albina G Isaeva
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
2
|
Deng R, Law AHY, Shen J, Chan GCF. Mini Review: Application of Human Mesenchymal Stem Cells in Gene and Stem Cells Therapy Era. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Alvarez-Urena P, Zhu B, Henslee G, Sonnet C, Davis E, Sevick-Muraca E, Davis A, Olmsted-Davis E. Development of a Cell-Based Gene Therapy Approach to Selectively Turn Off Bone Formation. J Cell Biochem 2017. [PMID: 28621436 DOI: 10.1002/jcb.26220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell and gene therapy approaches are safer when they possess a system that enables the therapy to be rapidly halted. Human mesenchymal stem cells were transduced with an adenoviral vector containing the cDNA for bone morphogenetic protein 2 (AdBMP2) to induce bone formation. To make this method safer, a system to quickly kill these virally transduced cells was designed and evaluated. Cells were encapsulated inside poly(ethylene glycol) diacrylate (PEG-Da) hydrogels that are able to shield the cells from immunological destruction. The system involves an inducible caspase-9 (iCasp9) activated using a specific chemical inducer of dimerization (CID). Delivering AdBMP2-transduced human mesenchymal stem cells encapsulated in PEG-Da hydrogel promoted ectopic ossification in vivo, and the iCasp9 system allowed direct control of the timing of apoptosis of the injected cells. The iCasp9-CID system enhances the safety of delivering AdBMP2-transduced cells, making it a more compelling therapeutic for bone repair and spine fusion. J. Cell. Biochem. 118: 3627-3634, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pedro Alvarez-Urena
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Banghe Zhu
- Center for Molecular Imaging, University of Texas Health Sciences Center, Houston, Texas.,Department of Pediatrics-Section Hematology/Oncology, Baylor College of Medicine, Houston, Texas
| | - Gabrielle Henslee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Corinne Sonnet
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Eleanor Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Eva Sevick-Muraca
- Center for Molecular Imaging, University of Texas Health Sciences Center, Houston, Texas
| | - Alan Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.,Department of Pediatrics-Section Hematology/Oncology, Baylor College of Medicine, Houston, Texas.,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| | - Elizabeth Olmsted-Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.,Department of Pediatrics-Section Hematology/Oncology, Baylor College of Medicine, Houston, Texas.,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Liu T, Zhang Y, Shen Z, Zou X, Chen X, Chen L, Wang Y. Immunomodulatory effects of OX40Ig gene-modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation. Int J Mol Med 2016; 39:144-152. [PMID: 27878248 PMCID: PMC5179179 DOI: 10.3892/ijmm.2016.2808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/07/2016] [Indexed: 01/01/2023] Open
Abstract
Recent studies have suggested that adipose tissue-derived mesenchymal stem cell (ADSC) therapy and OX40 costimulation blockade are two immunomodulatory strategies used to suppress the immune response to alloantigens. However, relatively little has been reported regarding the immunomodulatory potential of the abilityof these two strategies to synergize. Thus, in the present study, we aimed to investigate OX40-Ig fusion protein (OX40Ig) expression in ADSCs and to validate their more potent immunosuppressive activity in preventing renal allograft rejection. For this purpose, ADSCs from Lewis rats were transfected with the recombinant plasmid, pcDNA3.1(-)OX40Ig, by nucleofection. The ADSCs transduced with the plasmid (termed ADSCsOX40Ig) or untransduced ADSCs (termed ADSCsnative) were added to allostimulated mixed lymphocyte reaction (MLR) in vitro. In vivo, ADSCsOX40Ig, ADSCsnative, or PBS were administered to an allogeneic renal transplantation model, and the therapeutic effects, as well as the underlying mechanisms were examined. The results revealed that both the ADSCsnative and ADSCsOX40Ig significantly suppressed T cell proliferation and increased the percentage of CD4+CD25+ regulatory T cells in allogeneic MLR assays, with the ADSCsOX40Ig being more effective. Furthermore, the results from our in vivo experiments revealed that compared with the ADSCsnative or PBS group, the administration of autologous ADSCsOX40Ig markedly prolonged the mean survival time of renal grafts, reduced allograft rejection, and significantly downregulated the mRNA expression of intragraft interferon-γ (IFN-γ) , and upregulated the mRNA expression of interleukin (IL)‑10, transforming growth factor-β (TGF-β) and forkhead box protein 3 (Foxp3). The findings of our study indicate that the use of ADSCsOX40Ig is a promising strategy for preventing renal allograft rejection. This strategy provides the synergistic benefits of ADSC immune modulation and OX40-OX40L pathway blockade, and may therefore have therapeutic potential in clinical renal transplantation.
Collapse
Affiliation(s)
- Tao Liu
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| | - Yue Zhang
- Reproductive Center, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, P.R. China
| | - Zhongyang Shen
- Department of Transplantation Surgery, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Xunfeng Zou
- Department of General Surgery, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Xiaobo Chen
- Union Stem and Gene Engineering Co., Ltd., Tianjin 300384, P.R. China
| | - Li Chen
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| | - Yuliang Wang
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| |
Collapse
|
5
|
Abbayya K, Zope SA, Naduwinmani S, Pisal A, Puthanakar N. Cell- and Gene- Based Therapeutics for Periodontal Regeneration. Int J Prev Med 2015; 6:110. [PMID: 26682031 PMCID: PMC4671162 DOI: 10.4103/2008-7802.169080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/27/2015] [Indexed: 11/30/2022] Open
Abstract
Periodontitis is a disease of the periodontium, characterized by loss of connective tissue attachment and supporting the alveolar bone. Therefore, to regenerate these lost tissues of the periodontium researchers have included a variety of surgical procedures including grafting materials growth factors and the use of barrier membranes, ultimately resulting into regeneration that is biologically possible but clinically unpredictable. Recently a newer approach of delivering DNA plasmids as therapeutic agents is gaining special attention and is called gene delivery method. Gene therapy being considered a novel approach have a potential to channel their signals in a very systematic and controlled manner thereby providing encoded proteins at all stages of tissue regeneration. The aim of this review was to enlighten a view on the application involving gene delivery and tissue engineering in periodontal regeneration.
Collapse
Affiliation(s)
- Keshava Abbayya
- Department of Periodontology, School of Dental Sciences, Krishna Institute of Medical Sciences Deemed University, Karad, Maharashtra, India
| | - Sameer Anil Zope
- Department of Periodontology, School of Dental Sciences, Krishna Institute of Medical Sciences Deemed University, Karad, Maharashtra, India
| | - Sanjay Naduwinmani
- Department of Orthodontics, Maratha Mandal Dental College, Belgaum, Karnataka, India
| | - Apurva Pisal
- Department of Periodontology, School of Dental Sciences, Krishna Institute of Medical Sciences Deemed University, Karad, Maharashtra, India
| | - Nagraj Puthanakar
- Department of Prosthodontics, A.C.P.M. Dental College, Dhule, Maharashtra, India
| |
Collapse
|
6
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
7
|
Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials 2015; 77:87-97. [PMID: 26584349 DOI: 10.1016/j.biomaterials.2015.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Systemic administration of mesenchymal stem cells (MSCs) affords the potential to ameliorate the symptoms of Multiple Sclerosis (MS) in both preclinical and clinical studies. However, the efficacy of MSC-based therapy for MS likely depends on the number of cells that home to inflamed tissues and on the controlled production of paracrine and immunomodulatory factors. Previously, we reported that engineered MSCs expressing P-selectin glycoprotein ligand-1 (PSGL-1) and Sialyl-Lewis(x) (SLeX) via mRNA transfection facilitated the targeted delivery of anti-inflammatory cytokine interleukin-10 (IL-10) to inflamed ear. Here, we evaluated whether targeted delivery of MSCs with triple PSGL1/SLeX/IL-10 engineering improves therapeutic outcomes in mouse experimental autoimmune encephalomyelitis (EAE), a murine model for human MS. We found PSGL-1/SLeX mRNA transfection significantly enhanced MSC homing to the inflamed spinal cord. This is consistent with results from in vitro flow chamber assays in which PSGL-1/SleX mRNA transfection significantly increased the percentage of rolling and adherent cells on activated brain microvascular endothelial cells, which mimic the inflamed endothelium of blood brain/spinal cord barrier in EAE. In addition, IL-10-transfected MSCs show significant inhibitory activity on the proliferation of CD4(+) T lymphocytes from EAE mice. In vivo treatment with MSCs engineered with PSGL-1/SLeX/IL-10 in EAE mice exhibited a superior therapeutic function over native (unmodified) MSCs, evidenced by significantly improved myelination and decreased lymphocytes infiltration into the white matter of the spinal cord. Our strategy of targeted delivery of performance-enhanced MSCs could potentially be utilized to increase the effectiveness of MSC-based therapy for MS and other central nervous system (CNS) disorders.
Collapse
|
8
|
Götz C, Warnke PH, Kolk A. Current and future options of regeneration methods and reconstructive surgery of the facial skeleton. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:315-23. [PMID: 26297391 DOI: 10.1016/j.oooo.2015.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 01/06/2023]
Abstract
Musculoskeletal defects attributable to trauma or infection or as a result of oncologic surgery present a common challenge in reconstructive maxillofacial surgery. The autologous vascularized bone graft still represents the gold standard for salvaging these situations. Preoperative virtual planning offers great potential and provides assistance in reconstructive surgery. Nevertheless, the applicability of autologous bone transfer might be limited within the medically compromised patient or because of the complexity of the defect and the required size of the graft to be harvested. The development of alternative methods are urgently needed in the field of regenerative medicine to enable the regeneration of the original tissue. Since the first demonstration of de novo bone formation by regenerative strategies and the application of bone growth factors some decades ago, further progress has been achieved by tissue engineering, gene transfer, and stem cell application concepts. This review summarizes recent approaches and current developments in regenerative medicine.
Collapse
Affiliation(s)
- Carolin Götz
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Patrick H Warnke
- Department of Oral and Maxillofacial Surgery, University of Kiel, Kiel, Germany; Belegärztliche Gemeinschaftspraxis für Oral-, Mund- und Kieferchirurgie und plastische Gesichtschirurgie Dres. Sprengel und Klebe, Flensburg, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
| |
Collapse
|
9
|
GFP labelling and epigenetic enzyme expression of bone marrow-derived mesenchymal stem cells from bovine foetuses. Res Vet Sci 2015; 99:120-8. [PMID: 25637269 DOI: 10.1016/j.rvsc.2014.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSC) are multipotent progenitor cells defined by their ability to self-renew and give rise to differentiated progeny. Since MSC from adult tissues represent a promising source of cells for a wide range of cellular therapies, there is high scientific interest in better understanding the potential for genetic modification and the mechanism underlying differentiation. The main objective of this study was to evaluate the potential for gene delivery using a GFP vector and lipofectamine, and to quantify the expression of epigenetic enzymes during foetal bMSC multilineage differentiation. Proportion of GFP-positive cells achieved (15.7% ± 3.5) indicated moderately low transfection efficiency. Analysis of DNA methyltransferase expression during MSC multilineage differentiation suggested no association with osteogenic and chondrogenic differentiation. However, up-regulation of KDM6B expression during osteogenic differentiation was associated with adoption of osteogenic lineage. Furthermore, increase in epigenetic enzyme expression suggested an intense epigenetic regulation during adipogenic differentiation.
Collapse
|
10
|
Mundra V, Wu H, Mahato RI. Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation. PLoS One 2013; 8:e77591. [PMID: 24204883 PMCID: PMC3812220 DOI: 10.1371/journal.pone.0077591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to determine the potential of human bone marrow derived mesenchymal stem cells (hBMSCs) as gene carriers for improving the outcome of human islet transplantation. hBMSCs were characterized for the expression of phenotypic markers and transduced with Adv-hVEGF-hIL-1Ra to overexpress human vascular endothelial growth factor (hVEGF) and human interleukin-1 receptor antagonist (hIL-1Ra). Human islets were co-cultured with hBMSCs overexpressing hVEGF and hIL-1Ra. Islet viability was determined by membrane fluorescent method and glucose stimulation test. Transduced hBMSCs and human islets were co-transplanted under the kidney capsule of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) diabetic mice and blood glucose levels were measured over time to demonstrate the efficacy of genetically modified hBMSCs. At the end of study, immunofluorescent staining of kidney section bearing islets was performed for insulin and von Willebrand Factor (vWF). hBMSCs were positive for the expression of CD73, CD90, CD105, CD146 and Stro-1 surface markers as determined by flow cytometry. Transduction of hBMSCs with adenovirus did not affect their stemness and differentiation potential as confirmed by mRNA levels of stem cell markers and adipogenic differentiation of transduced hBMSCs. hBMSCs were efficiently transduced with Adv-hVEGF-hIL-1Ra to overexpress hVEGF and hIL-1Ra. Live dead cell staining and glucose stimulation test have shown that transduced hBMSCs improved the viability of islets against cytokine cocktail. Co-transplantation of human islets with genetically modified hBMSCs improved the glycemic control of diabetic NSG mice as determined by mean blood glucose levels and intraperitoneal glucose tolerance test. Immunofluorescent staining of kidney sections was positive for human insulin and vWF. In conclusion, our results have demonstrated that hBMSCs may be used as gene carriers and nursing cells to improve the outcome of islet transplantation.
Collapse
Affiliation(s)
- Vaibhav Mundra
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sewbalas A, Islam RU, van Otterlo WAL, de Koning CB, Singh M, Arbuthnot P, Ariatti M. Enhancement of transfection activity in HEK293 cells by lipoplexes containing cholesteryl nitrogen-pivoted aza-crown ethers. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0252-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Yuan SH, Bi Z. Effect of recombinant adeno-associated BMP-4/7 fusion gene on the biology of BMSCs. Mol Med Rep 2012; 6:1413-7. [PMID: 23008131 DOI: 10.3892/mmr.2012.1090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 08/01/2012] [Indexed: 11/05/2022] Open
Abstract
The aim of the study was to investigate the effect of recombinant adeno-associated virus (AAV) with morphogenetic protein 4/7 fusion gene on the ossification of rabbit bone marrow stromal cells (BMSCs). The genes BMP-4 and BMP-7 were obtained through one-step reverse transcriptase polymerase chain reaction from human placental cells. The BMP-4/7 fusion gene was generated through recombination. The rabbit BMSCs were transfected with the recombinant AAV vectors carrying AAV-BMP-4/7 with various multiplicity of infection (MOI) values. Expression of fusion gene BMP-4/7 protein was determined by the ELISA method. The ossification of cells was evaluated by observing alkaline phosphatase (ALP) and osteocalcin (OC) activity after transfection for 7 and 14 days. We successfully constructed the recombinant AAV with the BMP-4/7 fusion gene. A 29-20 kDa protein was shown by SDS-PAGE electrophoresis following transfection with AAV-BMP-4/7. The fusion protein BMP-4/7 in BMSCs transferred by AAV showed a positive correlation with various MOI values. There was significantly higher ALP and OC activity in the AAV-BMP-4/7 transfection groups than in the AAV-EGFP groups (t(ALP)=896.88, P<0.001, t(OC)=543.24, P<0.01). The fusion gene BMP-4/7 is capable of enhancing the expression of BMPs and possesses significant ossification activity through AAV.
Collapse
Affiliation(s)
- Shao-Hui Yuan
- Department of Orthopedics, the First Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | | |
Collapse
|
13
|
Narainpersad N, Singh M, Ariatti M. Novel neo glycolipid: formulation into pegylated cationic liposomes and targeting of DNA lipoplexes to the hepatocyte-derived cell line HepG2. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:206-23. [PMID: 22356236 DOI: 10.1080/15257770.2011.649331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Liver parenchymal cells are an important target for the treatment of several metabolic and viral disorders. Corrective gene delivery for this purpose is an avenue that is receiving increasing attention. In the present study, we report a novel neo glycolipid that may be formulated into cationic liposomes with or without poly(ethylene glycol) decoration. Lipoplexes formed with plasmid DNA are nuclease resistant and are targeted to the human hepatoblastoma cell line HepG2 by selective asialoglycoprotein receptor mediation. Transfection levels achieved by lipoplexes containing the targeting ligand cholesteryl-3β-N-(4-aminophenyl-β-D-galactopyranosyl) carbamate were sixfold greater than those obtained with similar but untargeted lipoplexes.
Collapse
Affiliation(s)
- Nicolisha Narainpersad
- Department of Biochemistry, Non-Viral Gene Delivery Laboratory , University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | | | | |
Collapse
|
14
|
Liu ML, Oh JS, An SS, Pennant WA, Kim HJ, Gwak SJ, Yoon DH, Kim KN, Lee M, Ha Y. Controlled nonviral gene delivery and expression using stable neural stem cell line transfected with a hypoxia-inducible gene expression system. J Gene Med 2010; 12:990-1001. [DOI: 10.1002/jgm.1527] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
15
|
Terrovitis JV, Smith RR, Marbán E. Assessment and optimization of cell engraftment after transplantation into the heart. Circ Res 2010; 106:479-94. [PMID: 20167944 DOI: 10.1161/circresaha.109.208991] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myocardial regeneration using stem and progenitor cell transplantation in the injured heart has recently become a major goal in the treatment of cardiac disease. Experimental studies and clinical applications have generally been encouraging, although the functional benefits that have been attained clinically are modest and inconsistent. Low cell retention and engraftment after myocardial delivery is a key factor limiting the successful application of cell therapy, irrespective of the type of cell or the delivery method. To improve engraftment, accurate methods for tracking cell fate and quantifying cell survival need to be applied. Several laboratory techniques (histological methods, real-time quantitative polymerase chain reaction, radiolabeling) have provided invaluable information about cell engraftment. In vivo imaging (nuclear medicine modalities, bioluminescence, and MRI) has the potential to provide quantitative information noninvasively, enabling longitudinal assessment of cell fate. In the present review, we present several available methods for assessing cell engraftment, and we critically discuss their strengths and limitations. In addition to providing insights about the mechanisms mediating cell loss after transplantation, these methods can evaluate techniques for augmenting engraftment, such as tissue engineering approaches, preconditioning, and genetic modification, allowing optimization of cell therapies.
Collapse
|
16
|
Liu TM, Wu YN, Guo XM, Hui JHP, Lee EH, Lim B. Effects of ectopic Nanog and Oct4 overexpression on mesenchymal stem cells. Stem Cells Dev 2009; 18:1013-22. [PMID: 19102659 DOI: 10.1089/scd.2008.0335] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a source of pluripotent cells that are already in various phases of clinical application. However, the use of MSCs in tissue engineering has been hampered largely due to their limitations, including low proliferation, finite life span, and gradual loss of their stem cell properties during ex vivo expansion. Nanog and Oct4 are key transcription factors essential to the pluripotent and self-renewing phenotypes of undifferentiated embryonic stem cells (ESCs). To determine whether Nanog and Oct4 improve human bone marrow-MSC quality, we therefore established stable Nanog and Oct4 overexpressing MSCs using a lentiviral system and showed that this promoted cell proliferation and enhanced colony formation of MSCs. In differentiating MSCs, Nanog, and Oct4, overexpression had converse effects on adipogenesis of MSCs and Nanog overexpression slowed down adipogenesis, whereas Oct4 overexpression improved adipogenesis. Nanog and Oct4 overexpression both improved chondrogenesis. Microarray data showed many differences in transcriptional targets in undifferentiated MSCs overexpressing Nanog and Oct4. These results provide insight into the improvement of the stemness of MSCs by genetic modification with stemness-related genes.
Collapse
Affiliation(s)
- Tong Ming Liu
- Department of Orthopaedic Surgery, NUS Tissue Engineering Program, National University of Singapore, 119074 Singapore
| | | | | | | | | | | |
Collapse
|
17
|
Nifontova IN, Sats NV, Surin VL, Svinareva DA, Gasparian ME, Drize NJ. Infection of stromal and hemopoietic precursor cells with lentivirus vector in vivo and in vitro. Bull Exp Biol Med 2008; 145:133-6. [PMID: 19024021 DOI: 10.1007/s10517-008-0030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We developed a method for gene transfer into mesenchymal stromal cells. Lentivirus vector containing green fluorescent protein gene for labeling stromal and hemopoietic precursor cells was obtained using two plasmid sets from different sources. The vector was injected into the femur of mice in vivo and added into culture medium for in vitro infection of the stromal sublayer of long-term bone marrow culture. From 25 to 80% hemopoietic stem cells forming colonies in the spleen were infected with lentivirus vector in vivo and in vitro. Fibroblast colony-forming cells from the femoral bones of mice injected with the lentivirus vector carried no marker gene. The marker gene was detected in differentiated descendants from mesenchymal stem cells (bone cavity cells from the focus of ectopic hemopoiesis formed after implantation of the femoral bone marrow cylinder infected with lentivirus vector under the renal capsule of syngeneic recipient). In in vitro experiments, the marker gene was detected in sublayers of long-term bone marrow cultures infected after preliminary 28-week culturing, when hemopoiesis was completely exhausted. The efficiency of infection of stromal precursor cells depended on the source of lentivirus. The possibility of transfering the target gene into hemopoietic precursor cells in vivo is demonstrated. Stromal precursor cells can incorporate the provirus in vivo and in vitro, but conditions and infection system for effective infection should be thoroughly selected.
Collapse
Affiliation(s)
- I N Nifontova
- Hematology Research Center, Russian Academy of Medical Sciences.
| | | | | | | | | | | |
Collapse
|
18
|
Zou L, Zou X, Chen L, Li H, Mygind T, Kassem M, Bünger C. Multilineage differentiation of porcine bone marrow stromal cells associated with specific gene expression pattern. J Orthop Res 2008; 26:56-64. [PMID: 17676606 DOI: 10.1002/jor.20467] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There are increasing reports regarding differentiation of bone marrow stromal cells (BMSC) from human and various species of animals including pigs. The phenotype and function of BMSC along a mesenchymal lineage differentiation are well characterized by specific transcription factors and marker genes. However, it is not fully clear whether multilineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) of BMSC is associated with a specific gene expression pattern. In the present study, we investigated the gene expression pattern of representative transcription factors and marker genes along those three mesenchymal lineages during a particular lineage differentiation of porcine BMSC by means of real-time PCR measurement. In an osteogenic medium, the mRNA levels of cbfa1, osterix, alkaline phosphatase, type 1 collagen, osteonectin, bone sialoprotein, and osteocalcin were induced stepwise. Meanwhile, sox9, specific to chondrogenic differentiation, was inhibited but not PPARgamma2 specific to adipogenic differentiation. In an adipogenic medium, adipogenic differentiation was confirmed by upregulation of PPARgamma2 and aP2 and downregulation of osteogenic genes and sox9. Chondrogenic differentiation was induced in cell pellet culture by expression of sox9, type 2 collagen, and aggrecan. Cbfa1 and PPARgamma2 were inhibited in chondrogenic medium. These results indicate that the differentiation potential of BMSC to a particular mesenchymal lineage relies upon specific gene expression pattern, namely upregulation of genes specific for this lineage and suppression of other lineage differentiation.
Collapse
Affiliation(s)
- Lijin Zou
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
19
|
Kang Y, Liao WM, Yuan ZH, Sheng PY, Zhang LJ, Yuan XW, Lei L. In vitro and in vivo induction of bone formation based on adeno-associated virus-mediated BMP-7 gene therapy using human adipose-derived mesenchymal stem cells. Acta Pharmacol Sin 2007; 28:839-49. [PMID: 17506943 DOI: 10.1111/j.1745-7254.2007.00583.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM To determine whether adeno-associated virus (AAV)-2-mediated, bone morphogenetic protein (BMP)-7-expressing human adipose-derived mesenchymal stem cells (ADMS) cells would induce bone formation in vitro and in vivo. METHODS ADMS cells were harvested from patients undergoing selective suction-assisted lipectomy and transduced with AAV carrying the human BMP-7 gene. Non-transduced cells and cells transduced with AAV serotype 2 carrying the enhanced green fluorescence protein gene served as controls. ADMS cells were qualitatively assessed for the production of BMP-7 and osteocalcin, and subjected to alkaline phosphatase (ALP) and Chinalizarin staining. A total of 2.5 x 10(6) cells mixed with type I collagen were implanted into the hind limb of severe combined immune-deficient (SCID) mice and subjected to a histological analysis 3 weeks post implantation. RESULTS Transfection of the ADMS cells achieved an efficiency of 99% at d 7. Transduction with AAV2-BMP-7 induced the expression of BMP-7 until d 56, which was markedly increased by d 7. The cells were positively stained for ALP. Osteocalcin production and matrix mineralization further confirmed that these cells differentiated into osteoblasts and induced bone formation in vitro. A histological examination demonstrated that implantation of BMP-7-expressing ADMS cells could induce new bone formation in vivo. CONCLUSION The present in vitro and in vivo study demonstrated that human ADMS cells would be a promising source of autologous mesenchymal stem cells for BMP gene therapy and tissue engineering.
Collapse
Affiliation(s)
- Yan Kang
- Department of Orthopedics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | | | | | | | | | | | | |
Collapse
|