1
|
Melanker O, Goloubinoff P, Schreiber G. In vitro evolution of uracil glycosylase towards DnaKJ and GroEL binding evolves different misfolded states. J Mol Biol 2022; 434:167627. [PMID: 35597550 DOI: 10.1016/j.jmb.2022.167627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Natural evolution is driven by random mutations that improve fitness. In vitro evolution mimics this process, however, on a short time-scale and is driven by the given bait. Here, we used directed in vitro evolution of a random mutant library of Uracil glycosylase (eUNG) displayed on yeast surface to select for binding to chaperones GroEL, DnaK+DnaJ+ATP (DnaKJ) or E.coli cell extract (CE), using binding to the eUNG inhibitor Ugi as probe for native fold. The CE selected population was further divided to Ugi binders (+U) or non-binders (-U). The aim here was to evaluate the sequence space and physical state of the evolved protein binding the different baits. We found that GroEL, DnaKJ and CE-U select and enrich for mutations causing eUNG to misfold, with the three being enriched in mutations in buried and conserved positions, with a tendency to increase positive charge. Still, each selection had its own trajectory, with GroEL and CE-U selecting mutants highly sensitive to protease cleavage while DnaKJ selected partially structured misfolded species with a tendency to refold, making them less sensitive to proteases. More general, our results show that GroEL has a higher tendency to purge promiscuous misfolded protein mutants from the system, while DnaKJ binds misfolding-prone mutant species that are, upon chaperone release, more likely to natively refold. CE-U shares some of the properties of GroEL- and DnaKJ-selected populations, while harboring also unique properties that can be explained by the presence of additional chaperones in CE, such as Trigger factor, HtpG and ClpB.
Collapse
Affiliation(s)
- Oran Melanker
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Lausanne University, 1015 Lausanne, Switzerland
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Sharma R, Pramanik MM, Chandramouli B, Rastogi N, Kumar N. Understanding organellar protein folding capacities and assessing their pharmacological modulation by small molecules. Eur J Cell Biol 2018; 97:114-125. [DOI: 10.1016/j.ejcb.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 01/06/2018] [Indexed: 02/08/2023] Open
|
3
|
Gat-Yablonski G, Finka A, Pinto G, Quadroni M, Shtaif B, Goloubinoff P. Quantitative proteomics of rat livers shows that unrestricted feeding is stressful for proteostasis with implications on life span. Aging (Albany NY) 2016; 8:1735-58. [PMID: 27508340 PMCID: PMC5032693 DOI: 10.18632/aging.101009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
Abstract
Studies in young mammals on the molecular effects of food restriction leading to prolong adult life are scares. Here, we used high-throughput quantitative proteomic analysis of whole rat livers to address the molecular basis for growth arrest and the apparent life-prolonging phenotype of the food restriction regimen. Over 1800 common proteins were significantly quantified in livers of ad libitum, restriction- and re-fed rats, which summed up into 92% of the total protein mass of the cells. Compared to restriction, ad libitum cells contained significantly less mitochondrial catabolic enzymes and more cytosolic and ER HSP90 and HSP70 chaperones, which are hallmarks of heat- and chemically-stressed tissues. Following re-feeding, levels of HSPs nearly reached ad libitum levels. The quantitative and qualitative protein values indicated that the restriction regimen was a least stressful condition that used minimal amounts of HSP-chaperones to maintain optimal protein homeostasis and sustain optimal life span. In contrast, the elevated levels of HSP-chaperones in ad libitum tissues were characteristic of a chronic stress, which in the long term could lead to early aging and shorter life span.
Collapse
Affiliation(s)
- Galia Gat-Yablonski
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, 23000 Zadar, Croatia
| | - Galit Pinto
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Biana Shtaif
- Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Finka A, Mattoo RUH, Goloubinoff P. Experimental Milestones in the Discovery of Molecular Chaperones as Polypeptide Unfolding Enzymes. Annu Rev Biochem 2016; 85:715-42. [PMID: 27050154 DOI: 10.1146/annurev-biochem-060815-014124] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.
Collapse
Affiliation(s)
- Andrija Finka
- Laboratory of Biophysical Statistics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rayees U H Mattoo
- Department of Structural Biology, Stanford University, Stanford, California 94305;
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
5
|
Priya S, Sharma SK, Goloubinoff P. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett 2013; 587:1981-7. [PMID: 23684649 DOI: 10.1016/j.febslet.2013.05.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Stress-denatured or de novo synthesized and translocated unfolded polypeptides can spontaneously reach their native state without assistance of other proteins. Yet, the pathway to native folding is complex, stress-sensitive and prone to errors. Toxic misfolded and aggregated conformers may accumulate in cells and lead to degenerative diseases. Members of the canonical conserved families of molecular chaperones, Hsp100s, Hsp70/110/40s, Hsp60/CCTs, the small Hsps and probably also Hsp90s, can recognize and bind with high affinity, abnormally exposed hydrophobic surfaces on misfolded and aggregated polypeptides. Binding to Hsp100, Hsp70, Hsp110, Hsp40, Hsp60, CCTs and Trigger factor may cause partial unfolding of the misfolded polypeptide substrates, and ATP hydrolysis can induce further unfolding and release from the chaperone, leading to spontaneous refolding into native proteins with low-affinity for the chaperones. Hence, specific chaperones act as catalytic polypeptide unfolding isomerases, rerouting cytotoxic misfolded and aggregated polypeptides back onto their physiological native refolding pathway, thus averting the onset of protein conformational diseases.
Collapse
Affiliation(s)
- Smriti Priya
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
6
|
Dumont E, Bahrman N, Goulas E, Valot B, Sellier H, Hilbert JL, Vuylsteker C, Lejeune-Hénaut I, Delbreil B. A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:86-98. [PMID: 21421351 DOI: 10.1016/j.plantsci.2010.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 05/05/2023]
Abstract
Two pea lines (Pisum sativum L.) with contrasted behaviours towards chilling and subsequent frost were studied by a proteomic approach to better understand cold acclimation. Following a chilling period, the Champagne line becomes tolerant to frost whereas Terese remains sensitive. Variance analysis allowed to select 260 statistically variable spots with 68 identified proteins (35 in leaves, 18 in stems, and 15 in roots). These proteins were shared out in proteins related to chilling response or cold acclimation. The better adaptation of Champagne to chilling might be related to a higher content in proteins involved in photosynthesis and in defence mechanisms. Moreover Champagne might prevent freezing damage particularly thanks to a higher constitutive expression of housekeeping proteins related to Terese. After three days of subsequent frost, proteomes of previously chilled plants also showed significant differences compared to unchilled plants. Out of 112 statistically variable spots (44 in leaves, 38 in stems, and 30 in roots), 32 proteins were identified. These proteins were related to frost response or frost resistance. It seems that Champagne could resist to frost with the reorientation of the energy metabolism.
Collapse
Affiliation(s)
- Estelle Dumont
- USTL INRA UMR 1281, Laboratoire des Stress Abiotiques et Différenciation des Végétaux Cultivés bât SN2, 3ème étage, Université des Sciences et Technologies de Lille 1, F-59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Finka A, Mattoo RUH, Goloubinoff P. Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 2011; 16:15-31. [PMID: 20694844 PMCID: PMC3024091 DOI: 10.1007/s12192-010-0216-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 12/18/2022] Open
Abstract
Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Rayees U. H. Mattoo
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Cornette R, Kanamori Y, Watanabe M, Nakahara Y, Gusev O, Mitsumasu K, Kadono-Okuda K, Shimomura M, Mita K, Kikawada T, Okuda T. Identification of anhydrobiosis-related genes from an expressed sequence tag database in the cryptobiotic midge Polypedilum vanderplanki (Diptera; Chironomidae). J Biol Chem 2010; 285:35889-99. [PMID: 20833722 PMCID: PMC2975212 DOI: 10.1074/jbc.m110.150623] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some organisms are able to survive the loss of almost all their body water content, entering a latent state known as anhydrobiosis. The sleeping chironomid (Polypedilum vanderplanki) lives in the semi-arid regions of Africa, and its larvae can survive desiccation in an anhydrobiotic form during the dry season. To unveil the molecular mechanisms of this resistance to desiccation, an anhydrobiosis-related Expressed Sequence Tag (EST) database was obtained from the sequences of three cDNA libraries constructed from P. vanderplanki larvae after 0, 12, and 36 h of desiccation. The database contained 15,056 ESTs distributed into 4,807 UniGene clusters. ESTs were classified according to gene ontology categories, and putative expression patterns were deduced for all clusters on the basis of the number of clones in each library; expression patterns were confirmed by real-time PCR for selected genes. Among up-regulated genes, antioxidants, late embryogenesis abundant (LEA) proteins, and heat shock proteins (Hsps) were identified as important groups for anhydrobiosis. Genes related to trehalose metabolism and various transporters were also strongly induced by desiccation. Those results suggest that the oxidative stress response plays a central role in successful anhydrobiosis. Similarly, protein denaturation and aggregation may be prevented by marked up-regulation of Hsps and the anhydrobiosis-specific LEA proteins. A third major feature is the predicted increase in trehalose synthesis and in the expression of various transporter proteins allowing the distribution of trehalose and other solutes to all tissues.
Collapse
Affiliation(s)
- Richard Cornette
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|