1
|
Felipe SMDS, de Freitas RM, Penha EDDS, Pacheco C, Martins DL, Alves JO, Soares PM, Loureiro ACC, Lima T, Silveira LR, Ferraz ASM, de Souza JES, Leal-Cardoso JH, Carvalho DP, Ceccatto VM. Transcriptional profile in rat muscle: down-regulation networks in acute strenuous exercise. PeerJ 2021; 9:e10500. [PMID: 33859869 PMCID: PMC8020866 DOI: 10.7717/peerj.10500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022] Open
Abstract
Background Physical exercise is a health promotion factor regulating gene expression and causing changes in phenotype, varying according to exercise type and intensity. Acute strenuous exercise in sedentary individuals appears to induce different transcriptional networks in response to stress caused by exercise. The objective of this research was to investigate the transcriptional profile of strenuous experimental exercise. Methodology RNA-Seq was performed with Rattus norvegicus soleus muscle, submitted to strenuous physical exercise on a treadmill with an initial velocity of 0.5 km/h and increments of 0.2 km/h at every 3 min until animal exhaustion. Twenty four hours post-physical exercise, RNA-seq protocols were performed with coverage of 30 million reads per sample, 100 pb read length, paired-end, with a list of counts totaling 12816 genes. Results Eighty differentially expressed genes (61 down-regulated and 19 up-regulated) were obtained. Reactome and KEGG database searches revealed the most significant pathways, for down-regulated gene set, were: PI3K-Akt signaling pathway, RAF-MAP kinase, P2Y receptors and Signaling by Erbb2. Results suggest PI3K-AKT pathway inactivation by Hbegf, Fgf1 and Fgr3 receptor regulation, leading to inhibition of cell proliferation and increased apoptosis. Cell signaling transcription networks were found in transcriptome. Results suggest some metabolic pathways which indicate the conditioning situation of strenuous exercise induced genes encoding apoptotic and autophagy factors, indicating cellular stress. Conclusion Down-regulated networks showed cell transduction and signaling pathways, with possible inhibition of cellular proliferation and cell degeneration. These findings reveal transitory and dynamic process in cell signaling transcription networks in skeletal muscle after acute strenuous exercise.
Collapse
Affiliation(s)
| | | | | | - Christina Pacheco
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Danilo Lopes Martins
- Digital Metropolis Institute, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Juliana Osório Alves
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Paula Matias Soares
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Tanes Lima
- Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Leonardo R Silveira
- Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | - Denise P Carvalho
- Carlos Chagas Filho Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vania Marilande Ceccatto
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
2
|
Gholamnezhad Z, Mégarbane B, Rezaee R. Molecular Mechanisms Mediating Adaptation to Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:45-61. [PMID: 32342449 DOI: 10.1007/978-981-15-1792-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several experimental and human studies documented the preventive and therapeutic effects of exercise on the normal physiological function of different body systems during aging as well as various diseases. Recent studies using cellular and molecular (biochemical, proteomics, and genomics) techniques indicated that exercise modifies intracellular and extracellular signaling and pathways. In addition, in vivo or in vitro experiments, particularly, using knockout and transgenic animals, helped to mimic physiological conditions during and after exercise. According to the findings of these studies, some important signaling pathways modulated by exercise are Ca2+-dependent calcineurin/activated nuclear factor of activated T-cells, mammalian target of rapamycin, myostatin/Smad, and AMP-activated protein kinase regulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha. Such modulations contribute to cell adaptation and remodeling of muscle fiber type in response to exercise. Despite great improvement in this field, there are still several unanswered questions as well as unfixed issues concerning clinical trials' biases and limitations. Nevertheless, designing multicenter standard clinical trials while considering individual variability and the exercise modality and duration will improve the perspective we have on the mechanisms mediating adaptation to exercise and final outcomes.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Paris-Diderot University, Paris, France
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Loland S. Performance-Enhancing Drugs, Sport, and the Ideal of Natural Athletic Performance. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2018; 18:8-15. [PMID: 29852101 DOI: 10.1080/15265161.2018.1459934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of certain performance-enhancing drugs (PED) is banned in sport. I discuss critically standard justifications of the ban based on arguments from two widely used criteria: fairness and harms to health. I argue that these arguments on their own are inadequate, and only make sense within a normative understanding of athletic performance and the value of sport. In the discourse over PED, the distinction between "natural" and "artificial" performance has exerted significant impact. I examine whether the distinction makes sense from a moral point of view. I propose an understanding of "natural" athletic performance by combining biological knowledge of training with an interpretation of the normative structure of sport. I conclude that this understanding can serve as moral justification of the PED ban and enable critical and analytically based line drawing between acceptable and nonacceptable performance-enhancing means in sport.
Collapse
|
4
|
Cui S, Sun B, Yin X, Guo X, Chao D, Zhang C, Zhang CY, Chen X, Ma J. Time-course responses of circulating microRNAs to three resistance training protocols in healthy young men. Sci Rep 2017; 7:2203. [PMID: 28526870 PMCID: PMC5438360 DOI: 10.1038/s41598-017-02294-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
Circulating microRNAs (c-miRNAs) in human plasma have been described as a potential marker of exercise. The present study investigated the effects of three acute resistance training (RT) protocols on the time-course changes of the c-miRNAs profiles in young males. The subjects (n = 45) were randomly divided into three groups: muscular strength endurance (SE), muscular hypertrophy (MH) and maximum strength (MS). Venous blood samples were obtained before exercise and immediately, 1 h and 24 h after each RT protocol to assess the following biological parameters: c-miRNAs, anabolic and catabolic hormones, inflammatory cytokines and muscle damage markers. The results revealed that the levels of two c-miRNAs (miR-208b and miR-532), six c-miRNAs (miR-133a, miR-133b, miR-206, miR-181a, miR-21 and miR-221) and two c-miRNAs (miR-133a and miR-133b) changed significantly in response to the SE, MH and MS protocols (p < 0.05), respectively. The nature and dynamic processes of the c-miRNAs response were likely influenced by the RT modality and intensity. Moreover, miR-532 was negatively correlated with insulin-like growth factor-1 and positively correlated with interleukin-10, whereas miR-133a was negatively correlated with cortisol and positively correlated with testosterone/cortisol. These findings suggest that these c-miRNAs may serve as markers for monitoring the RT responses.
Collapse
Affiliation(s)
- Shufang Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Biao Sun
- Department of Exercise and Heath, Nanjing sports Institute, 8 Linggusi Road Nanjing, Jiangsu, 210014, China
| | - Xin Yin
- Department of Exercise and Heath, Nanjing sports Institute, 8 Linggusi Road Nanjing, Jiangsu, 210014, China
| | - Xia Guo
- The Lab of Military Conditioning and Motor Function Assessment, the PLA University of Science and Technology, 60 Shuang Long Jie Road, Nanjing, Jiangsu, 211101, China
| | - Dingming Chao
- The Lab of Military Conditioning and Motor Function Assessment, the PLA University of Science and Technology, 60 Shuang Long Jie Road, Nanjing, Jiangsu, 211101, China
| | - Chunni Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu, 210046, China.,Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu, 210046, China.
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu, 210046, China.
| | - Jizheng Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu, 210046, China. .,The Lab of Military Conditioning and Motor Function Assessment, the PLA University of Science and Technology, 60 Shuang Long Jie Road, Nanjing, Jiangsu, 211101, China.
| |
Collapse
|
5
|
Lindholm ME, Giacomello S, Werne Solnestam B, Fischer H, Huss M, Kjellqvist S, Sundberg CJ. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts. PLoS Genet 2016; 12:e1006294. [PMID: 27657503 PMCID: PMC5033478 DOI: 10.1371/journal.pgen.1006294] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023] Open
Abstract
Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity. Skeletal muscle is the most abundant tissue of the healthy human body. It is also highly adaptable to different environmental stimuli, e.g. regular exercise. Exercise training improves overall health and muscle function, and can be used to prevent and treat several common diseases e.g. cardiovascular disease and type II diabetes. Therefore, it is of great importance to understand the molecular mechanisms behind adaptation processes in human skeletal muscle. In this study, we show that different expression variants from the same gene can be regulated in different directions with training, implicating alternative protein functions from one single gene. Such findings are emblematic of the complex mechanisms regulating the effects of training. We also find that training changes the activity of functionally unknown parts of the genome, with the potential for new proteins involved in the health-enhancing effects of exercise. Additionally, our results challenge the belief of a skeletal muscle memory, where previous training can affect the response to a subsequent training period. Overall, we provide understanding of the skeletal muscle biology and novel insights into the mechanisms behind the massive benefits of regular exercise on the human skeletal muscle transcriptome, inspiring further studies for deeper investigation.
Collapse
Affiliation(s)
- Maléne E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MEL); (CJS)
| | - Stefania Giacomello
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Beata Werne Solnestam
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Helene Fischer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Huss
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Sanela Kjellqvist
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MEL); (CJS)
| |
Collapse
|
6
|
Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse. Sci Rep 2016; 6:22932. [PMID: 26960911 PMCID: PMC4785432 DOI: 10.1038/srep22932] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/25/2016] [Indexed: 01/07/2023] Open
Abstract
The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.
Collapse
|
7
|
Neubauer O, Sabapathy S, Ashton KJ, Desbrow B, Peake JM, Lazarus R, Wessner B, Cameron-Smith D, Wagner KH, Haseler LJ, Bulmer AC. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling. J Appl Physiol (1985) 2013; 116:274-87. [PMID: 24311745 DOI: 10.1152/japplphysiol.00909.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reprogramming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time course-dependent changes in the muscular transcriptome after an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h postexercise from eight healthy, endurance-trained men. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three hours postexercise, 102 gene sets were upregulated [family wise error rate (FWER), P < 0.05], including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1 signaling. Forty-eight hours postexercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were upregulated. Ninety-six hours postexercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were upregulated, including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h postexercise transcriptome indicates substantial transcriptional activity potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.
Collapse
Affiliation(s)
- Oliver Neubauer
- Emerging Field Oxidative Stress and DNA Stability, Research Platform Active Aging, and Department of Nutritional Sciences, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Loland S, Hoppeler H. Justifying anti-doping: The fair opportunity principle and the biology of performance enhancement. Eur J Sport Sci 2012. [DOI: 10.1080/17461391.2011.566374] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Wall EH, McFadden TB. Triennial Lactation Symposium: A local affair: How the mammary gland adapts to changes in milking frequency. J Anim Sci 2011; 90:1695-707. [PMID: 22205668 DOI: 10.2527/jas.2011-4790] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Regular removal of milk from the mammary gland is critical to maintaining milk secretion. Early studies in rodents demonstrated that changes in milking frequency influenced mammary blood flow, as well as mammary cell number and activity. Later studies in ruminants confirmed those observations and that the response was regulated locally within the mammary gland. In addition, it was discovered that increased milking frequency (IMF) during early lactation stimulated an increase in milk production that partially persisted through late lactation, indicating long-term effects on mammary function. The local mechanisms regulating the mammary response to IMF are poorly understood, although several have been proposed. To gain insight into the mechanisms underlying the mammary response to IMF, and to identify genes associated with the response, we used a functional genomics approach and conducted experiments on dairy cows exposed to unilateral frequent milking [UFM; twice daily milking (2X) of the left udder half and 4-times daily milking (4X) of the right udder half]. Across multiple experiments, we were unable to detect an effect of UFM on mammary cell proliferation or apoptosis. We have, however, identified distinct transcriptional signatures associated with the mammary response to milk removal and to UFM during early lactation. Sequential sampling of mammary tissue revealed that when UFM was imposed during early lactation, at least 2 sets of genes were coordinately regulated with changes in differential milk production of 4X vs. 2X udder halves. Moreover, some genes were persistently differentially expressed in 4X vs. 2X udder halves after UFM and were associated with the persistent increase in milk yield. We conclude that a coordinated transcriptional response is associated with the increase in milk yield elicited by IMF during early lactation and that the 2 sets of differentially expressed genes may be a marker for the autocrine up-regulation of milk production. Moreover, we propose that we have identified a novel form of imprinting associated with persistent alteration of mammary function, which we term "lactational imprinting."
Collapse
Affiliation(s)
- E H Wall
- Department of Medicine,University of Vermont, Burlinglon 05405, USA
| | | |
Collapse
|
10
|
Friedmann-Bette B, Schwartz FR, Eckhardt H, Billeter R, Bonaterra G, Kinscherf R. Similar changes of gene expression in human skeletal muscle after resistance exercise and multiple fine needle biopsies. J Appl Physiol (1985) 2011; 112:289-95. [PMID: 22052872 DOI: 10.1152/japplphysiol.00959.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repeated biopsy sampling from one muscle is necessary to investigate muscular adaptation to different forms of exercise as adaptation is thought to be the result of cumulative effects of transient changes in gene expression in response to single exercise bouts. In a crossover study, we obtained four fine needle biopsies from one vastus lateralis muscle of 11 male subjects (25.9 ± 3.8 yr, 179.2 ± 4.8 cm, 76.5 ± 7.0 kg), taken before (baseline), 1, 4, and 24 h after one bout of squatting exercise performed as conventional squatting or as whole body vibration exercise. To investigate if the repeated biopsy sampling has a confounding effect on the observed changes in gene expression, four fine needle biopsies from one vastus lateralis muscle were also taken from 8 male nonexercising control subjects (24.5 ± 3.7 yr, 180.6 ± 1.2 cm, 81.2 ± 1.6 kg) at the equivalent time points. Using RT-PCR, we observed similar patterns of change in the squatting as well as in the control group for the mRNAs of interleukin 6 (IL-6), IL-6 receptor, insulin-like growth factor 1, p21, phosphofructokinase, and glucose transporter in relation to the baseline biopsy. In conclusion, multiple fine needle biopsies obtained from the same muscle region can per se influence the expression of marker genes induced by an acute bout of resistance exercise.
Collapse
Affiliation(s)
- Birgit Friedmann-Bette
- Department of Sports Medicine, Medical Clinic, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Wall EH, Bond JP, McFadden TB. Acute milk yield response to frequent milking during early lactation is mediated by genes transiently regulated by milk removal. Physiol Genomics 2011; 44:25-34. [PMID: 22028429 DOI: 10.1152/physiolgenomics.00027.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Milking dairy cows four times daily (4×) instead of twice daily (2×) during early lactation stimulates an increase in milk yield that partly persists through late lactation; however, the mechanisms behind this response are unknown. We hypothesized that the acute mammary response to regular milkings would be transient and would involve different genes from those that may be specifically regulated in response to 4×. Nine multiparous cows were assigned at parturition to unilateral frequent milking (UFM; 2× of the left udder half, 4× of the right udder half). Mammary biopsies were obtained from both rear quarters at 5 days in milk (DIM), immediately after 4× glands had been milked (experiment 1, n = 4 cows), or 2.5 h after both udder halves had last been milked (experiment 2, n = 5 cows). Affymetrix GeneChip Bovine Genome Arrays were used to measure gene expression. We found 855 genes were differentially expressed in mammary tissue between 2× vs. 4× glands of cows in experiment 1 (false discovery rate ≤ 0.05), whereas none were differentially expressed in experiment 2 using the same criterion. We conclude that there is an acute transcriptional response to milk removal, but 4× milking did not elicit differential expression of unique genes. Therefore, there does not appear to be a sustained transcriptional response to 4× milking on day 5 of lactation. Using a differential expression plot of data from both experiments, as well as qRT-PCR, we identified at least two genes (chitinase 3-like-1 and low-density lipoprotein-related protein-2 that may be responsive to both milk removal and to 4× milking. Therefore, the milk yield response to 4× milking may be mediated by genes that are acutely regulated by removal of milk from the mammary gland.
Collapse
Affiliation(s)
- E H Wall
- Department of Animal Science, University of Vermont, Burlington, Vermont, USA
| | | | | |
Collapse
|
12
|
Huber-Abel FAM, Gerber M, Hoppeler H, Baum O. Exercise-induced angiogenesis correlates with the up-regulated expression of neuronal nitric oxide synthase (nNOS) in human skeletal muscle. Eur J Appl Physiol 2011; 112:155-62. [PMID: 21505843 DOI: 10.1007/s00421-011-1960-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
The contribution of neuronal nitric oxide synthase (nNOS) to angiogenesis in human skeletal muscle after endurance exercise is controversially discussed. We therefore ascertained whether the expression of nNOS is associated with the capillary density in biopsies of the vastus lateralis (VL) muscle that had been derived from 10 sedentary male subjects before and after moderate training (four 30-min weekly jogging sessions for 6 months, with a heart-rate corresponding to 75% VO(2)max). In these biopsies, nNOS was predominantly expressed as alpha-isoform with exon-mu and to a lesser extent without exon-mu, as determined by RT-PCR. The mRNA levels of nNOS were quantified by real-time PCR and related to the capillary-to-fibre ratio and the numerical density of capillaries specified by light microscopy. If the VL biopsies of all subjects were co-analysed, mRNA levels of nNOS were non-significantly elevated after training (+34%; P > 0.05). However, only five of the ten subjects exhibited significant (P ≤ 0.05) elevations in the capillary-to-fibre ratio (+25%) and the numerical density of capillaries (+21%) and were thus undergoing angiogenesis. If the VL biopsies of these five subjects alone were evaluated, the mRNA levels of nNOS were significantly up-regulated (+128%; P ≤ 0.05) and correlated positively (r = 0.8; P ≤ 0.01) to angiogenesis. Accordingly, nNOS protein expression in VL biopsies quantified by immunoblotting was significantly increased (+82%; P ≤ 0.05) only in those subjects that underwent angiogenesis. In conclusion, the expression of nNOS at mRNA and protein levels was statistically linked to capillarity after exercise suggesting that nNOS is involved in the angiogenic response to training in human skeletal muscle.
Collapse
|
13
|
Liu D, Sartor MA, Nader GA, Gutmann L, Treutelaar MK, Pistilli EE, Iglayreger HB, Burant CF, Hoffman EP, Gordon PM. Skeletal muscle gene expression in response to resistance exercise: sex specific regulation. BMC Genomics 2010; 11:659. [PMID: 21106073 PMCID: PMC3091777 DOI: 10.1186/1471-2164-11-659] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 11/24/2010] [Indexed: 12/30/2022] Open
Abstract
Background The molecular mechanisms underlying the sex differences in human muscle morphology and function remain to be elucidated. The sex differences in the skeletal muscle transcriptome in both the resting state and following anabolic stimuli, such as resistance exercise (RE), might provide insight to the contributors of sexual dimorphism of muscle phenotypes. We used microarrays to profile the transcriptome of the biceps brachii of young men and women who underwent an acute unilateral RE session following 12 weeks of progressive training. Bilateral muscle biopsies were obtained either at an early (4 h post-exercise) or late recovery (24 h post-exercise) time point. Muscle transcription profiles were compared in the resting state between men (n = 6) and women (n = 8), and in response to acute RE in trained exercised vs. untrained non-exercised control muscle for each sex and time point separately (4 h post-exercise, n = 3 males, n = 4 females; 24 h post-exercise, n = 3 males, n = 4 females). A logistic regression-based method (LRpath), following Bayesian moderated t-statistic (IMBT), was used to test gene functional groups and biological pathways enriched with differentially expressed genes. Results This investigation identified extensive sex differences present in the muscle transcriptome at baseline and following acute RE. In the resting state, female muscle had a greater transcript abundance of genes involved in fatty acid oxidation and gene transcription/translation processes. After strenuous RE at the same relative intensity, the time course of the transcriptional modulation was sex-dependent. Males experienced prolonged changes while females exhibited a rapid restoration. Most of the biological processes involved in the RE-induced transcriptional regulation were observed in both males and females, but sex specificity was suggested for several signaling pathways including activation of notch signaling and TGF-beta signaling in females. Sex differences in skeletal muscle transcriptional regulation might implicate a mechanism behind disproportional muscle growth in males as compared with female counterparts after RE training at the same relative intensity. Conclusions Sex differences exist in skeletal muscle gene transcription both at rest and following acute RE, suggesting that sex is a significant modifier of the transcriptional regulation in skeletal muscle. The findings from the present study provide insight into the molecular mechanisms for sex differences in muscle phenotypes and for muscle transcriptional regulation associated with training adaptations to resistance exercise.
Collapse
Affiliation(s)
- Dongmei Liu
- Dept. of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lontay B, Bodoor K, Weitzel DH, Loiselle D, Fortner C, Lengyel S, Zheng D, Devente J, Hickner R, Haystead TAJ. Smoothelin-like 1 protein regulates myosin phosphatase-targeting subunit 1 expression during sexual development and pregnancy. J Biol Chem 2010; 285:29357-66. [PMID: 20634291 DOI: 10.1074/jbc.m110.143966] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnancy coordinately alters the contractile properties of both vascular and uterine smooth muscles reducing systemic blood pressure and maintaining uterine relaxation. The precise molecular mechanisms underlying these pregnancy-induced adaptations have yet to be fully defined but are likely to involve changes in the expression of proteins regulating myosin phosphorylation. Here we show that smoothelin like protein 1 (SMTNL1) is a key factor governing sexual development and pregnancy induced adaptations in smooth and striated muscle. A primary target gene of SMTNL1 in these muscles is myosin phosphatase-targeting subunit 1 (MYPT1). Deletion of SMTNL1 increases expression of MYPT1 30-40-fold in neonates and during development expression of both SMTNL1 and MYPT1 increases over 20-fold. Pregnancy also regulates SMTNL1 and MYPT1 expression, and deletion SMTNL1 greatly exaggerates expression of MYPT1 in vascular smooth muscle, producing a profound reduction in force development in response to phenylephrine as well as sensitizing the muscle to acetylcholine. We also show that MYPT1 is expressed in Type2a muscle fibers in mice and humans and its expression is regulated during pregnancy, suggesting unrecognized roles in mediating skeletal muscle plasticity in both species. Our findings define a new conserved pathway in which sexual development and pregnancy mediate smooth and striated muscle adaptations through SMTNL1 and MYPT1.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.
Collapse
|
16
|
McGivney BA, Eivers SS, MacHugh DE, MacLeod JN, O'Gorman GM, Park SDE, Katz LM, Hill EW. Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy. BMC Genomics 2009; 10:638. [PMID: 20042072 PMCID: PMC2812474 DOI: 10.1186/1471-2164-10-638] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 12/30/2009] [Indexed: 12/23/2022] Open
Abstract
Background Selection for exercise-adapted phenotypes in the Thoroughbred racehorse has provided a valuable model system to understand molecular responses to exercise in skeletal muscle. Exercise stimulates immediate early molecular responses as well as delayed responses during recovery, resulting in a return to homeostasis and enabling long term adaptation. Global mRNA expression during the immediate-response period has not previously been reported in skeletal muscle following exercise in any species. Also, global gene expression changes in equine skeletal muscle following exercise have not been reported. Therefore, to identify novel genes and key regulatory pathways responsible for exercise adaptation we have used equine-specific cDNA microarrays to examine global mRNA expression in skeletal muscle from a cohort of Thoroughbred horses (n = 8) at three time points (before exercise, immediately post-exercise, and four hours post-exercise) following a single bout of treadmill exercise. Results Skeletal muscle biopsies were taken from the gluteus medius before (T0), immediately after (T1) and four hours after (T2) exercise. Statistically significant differences in mRNA abundance between time points (T0 vs T1 and T0 vs T2) were determined using the empirical Bayes moderated t-test in the Bioconductor package Linear Models for Microarray Data (LIMMA) and the expression of a select panel of genes was validated using real time quantitative reverse transcription PCR (qRT-PCR). While only two genes had increased expression at T1 (P < 0.05), by T2 932 genes had increased (P < 0.05) and 562 genes had decreased expression (P < 0.05). Functional analysis of genes differentially expressed during the recovery phase (T2) revealed an over-representation of genes localized to the actin cytoskeleton and with functions in the MAPK signalling, focal adhesion, insulin signalling, mTOR signaling, p53 signaling and Type II diabetes mellitus pathways. At T1, using a less stringent statistical approach, we observed an over-representation of genes involved in the stress response, metabolism and intracellular signaling. These findings suggest that protein synthesis, mechanosensation and muscle remodeling contribute to skeletal muscle adaptation towards improved integrity and hypertrophy. Conclusions This is the first study to characterize global mRNA expression profiles in equine skeletal muscle using an equine-specific microarray platform. Here we reveal novel genes and mechanisms that are temporally expressed following exercise providing new knowledge about the early and late molecular responses to exercise in the equine skeletal muscle transcriptome.
Collapse
Affiliation(s)
- Beatrice A McGivney
- Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, UCD College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
LeMoine CMR, Craig PM, Dhekney K, Kim JJ, McClelland GB. Temporal and spatial patterns of gene expression in skeletal muscles in response to swim training in adult zebrafish (Danio rerio). J Comp Physiol B 2009; 180:151-60. [DOI: 10.1007/s00360-009-0398-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/20/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
|
18
|
miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One 2009; 4:e5610. [PMID: 19440340 PMCID: PMC2680038 DOI: 10.1371/journal.pone.0005610] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/24/2009] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNA species involved in post-transcriptional gene regulation. In vitro studies have identified a small number of skeletal muscle-specific miRNAs which play a crucial role in myoblast proliferation and differentiation. In skeletal muscle, an acute bout of endurance exercise results in the up-regulation of transcriptional networks that regulate mitochondrial biogenesis, glucose and fatty acid metabolism, and skeletal muscle remodelling. The purpose of this study was to assess the expressional profile of targeted miRNA species following an acute bout of endurance exercise and to determine relationships with previously established endurance exercise responsive transcriptional networks. C57Bl/6J wild-type male mice (N = 7/group) were randomly assigned to either sedentary or forced-endurance exercise (treadmill run @ 15 m/min for 90 min) group. The endurance exercise group was sacrificed three hours following a single bout of exercise. The expression of miR- 181, 1, 133, 23, and 107, all of which have been predicted to regulate transcription factors and co-activators involved in the adaptive response to exercise, was measured in quadriceps femoris muscle. Endurance exercise significantly increased the expression of miR-181, miR-1, and miR-107 by 37%, 40%, and 56%, respectively, and reduced miR-23 expression by 84% (P≤0.05 for all), with no change in miR-133. Importantly, decreased expression of miRNA-23, a putative negative regulator of PGC-1α was consistent with increased expression of PGC-1α mRNA and protein along with several downstream targets of PGC-1α including ALAS, CS, and cytochrome c mRNA. PDK4 protein content remains unaltered despite an increase in its putative negative regulator, miR-107, and PDK4 mRNA expression. mRNA expression of miRNA processing machinery (Drosha, Dicer, and DGCR8) remained unchanged. We conclude that miRNA-mediated post-transcriptional regulation is potentially involved in the complex regulatory networks that govern skeletal muscle adaptation to endurance exercise in C57Bl/6J male mice.
Collapse
|
19
|
Miyazaki M, Esser KA. Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol (1985) 2008; 106:1367-73. [PMID: 19036895 DOI: 10.1152/japplphysiol.91355.2008] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Growth and maintenance of skeletal muscle mass is critical for long-term health and quality of life. Skeletal muscle is a highly adaptable tissue with well-known sensitivities to environmental cues such as growth factors, cytokines, nutrients, and mechanical loading. All of these factors act at the level of the cell and signal through pathways that lead to changes in phenotype through multiple mechanisms. In this review, we discuss the animal and cell culture models used and the signaling mechanisms identified in understanding regulation of protein synthesis in response to mechanical loading/resistance exercise. Particular emphasis has been placed on 1) alterations in mechanical loading and regulation of protein synthesis in both in vivo animal studies and in vitro cell culture studies and 2) upstream mediators regulating mammalian target of rapamycin signaling and protein synthesis during skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- Mitsunori Miyazaki
- Department of Physiology, College of Medicine, University of Kentucky, 800 Rose St., UKMC MS508, Lexington, KY 40536, USA
| | | |
Collapse
|
20
|
Hoppeler H, Klossner S, Vogt M. Training in hypoxia and its effects on skeletal muscle tissue. Scand J Med Sci Sports 2008; 18 Suppl 1:38-49. [PMID: 18665951 DOI: 10.1111/j.1600-0838.2008.00831.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well established that local muscle tissue hypoxia is an important consequence and possibly a relevant adaptive signal of endurance exercise training in humans. It has been reasoned that it might be advantageous to increase this exercise stimulus by working in hypoxia. However, as long-term exposure to severe hypoxia has been shown to be detrimental to muscle tissue, experimental protocols were developed that expose subjects to hypoxia only for the duration of the exercise session and allow recovery in normoxia (live low-train high or hypoxic training). This overview reports data from 27 controlled studies using some implementation of hypoxic training paradigms. Hypoxia exposure varied between 2300 and 5700 m and training duration ranged from 10 days to 8 weeks. A similar number of studies was carried out on untrained and on trained subjects. Muscle structural, biochemical and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available data on global estimates of performance capacity such as maximal oxygen uptake (VO2max) and maximal power output (Pmax), hypoxia as a supplement to training is not consistently found to be of advantage for performance at sea level. There is some evidence mainly from studies on untrained subjects for an advantage of hypoxic training for performance at altitude. Live low-train high may be considered when altitude acclimatization is not an option.
Collapse
Affiliation(s)
- H Hoppeler
- Department of Anatomy, Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
21
|
Clark MG. Impaired microvascular perfusion: a consequence of vascular dysfunction and a potential cause of insulin resistance in muscle. Am J Physiol Endocrinol Metab 2008; 295:E732-50. [PMID: 18612041 PMCID: PMC2575906 DOI: 10.1152/ajpendo.90477.2008] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin has an exercise-like action to increase microvascular perfusion of skeletal muscle and thereby enhance delivery of hormone and nutrient to the myocytes. With insulin resistance, insulin's action to increase microvascular perfusion is markedly impaired. This review examines the present status of these observations and techniques available to measure such changes as well as the possible underpinning mechanisms. Low physiological doses of insulin and light exercise have been shown to increase microvascular perfusion without increasing bulk blood flow. In these circumstances, blood flow is proposed to be redirected from the nonnutritive route to the nutritive route with flow becoming dominant in the nonnutritive route when insulin resistance has developed. Increased vasomotion controlled by vascular smooth muscle may be part of the explanation by which insulin mediates an increase in microvascular perfusion, as seen from the effects of insulin on both muscle and skin microvascular blood flow. In addition, vascular dysfunction appears to be an early development in the onset of insulin resistance, with the consequence that impaired glucose delivery, more so than insulin delivery, accounts for the diminished glucose uptake by insulin-resistant muscle. Regular exercise may prevent and ameliorate insulin resistance by increasing "vascular fitness" and thereby recovering insulin-mediated capillary recruitment.
Collapse
Affiliation(s)
- Michael G Clark
- Menzies Research Institute, University of Tasmania, Private Bag 58, Hobart 7001, Australia.
| |
Collapse
|