1
|
Dong J, Cheng R, Yang Y, Zhao Y, Wu G, Zhang R, Zhu X, Li L, Li X. Effects of dietary taurine on growth, non-specific immunity, anti-oxidative properties and gut immunity in the Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 82:212-219. [PMID: 30125701 DOI: 10.1016/j.fsi.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Taurine has been widely researched as a growth-promoting additive or as an antioxidant in aquatic animals because of its multiple functions, however, few studies have explored its effects on crustacean in spite of the occurrence of serious diseases. We studied the effects of taurine supplementation on the growth, non-specific immunity, anti-oxidative properties and gut immunity of the Chinese mitten crab Eriocheir sinensis. Healthy crabs (8.0 ± 0.5 g) were fed diets supplemented with taurine at 0% (control), 0.2%, 0.4%, 0.8%, and 1.6% for 65 days. At the end of this 65 days feeding trial, the final weight, weight gain, specific growth rate, and feed conversion ratio were best in crabs fed the 0.4% taurine diet, followed by that in those fed the 0.8% taurine diet; the parameters were worst for the control group. Carapace length (CL) and carapace width (CW) were significantly increased in the crab fed the 0.4% and 0.8% taurine diet than that of the other three groups. Total haemocyte count (THC) and acid phosphatase (ACP) activity were significantly higher in the crab fed the 0.8% taurine diet than in those belonging to the other groups, the crabs fed the 0.4% taurine diet had the highest phenoloxidase (PO), lysozyme (LZM), and alkaline phosphatase (AKP) activities, however, there was no obvious change in their haemocyanin (Hc) content. According to superoxide dismutase (SOD), glutathione Peroxidase (GSH-PX), total anti-oxidant capacity (T-AOC) activities and malondialdehyde (MDA) content, the antioxidant capacity was significantly induced by taurine diet, while was higher in crabs fed 0.4 %-0.8% taurine diet than that of the other groups. Taurine supplementation significantly up-regulated the expression of gut immune genes (EsToll2, EsRelish) and antimicrobial peptides (EsALF1, EsALF2, EsCrus1, EsCrus2) in crabs gut fed the 0.2-0.8% taurine diet group compared to control. Thus, these study results indicate that dietary taurine is important for improving growth, regulating immunity, and enhancing the antioxidant capacity in crabs, with the recommended optimum dietary allowance being 0.4 %-0.8% taurine for E. sinensis.
Collapse
Affiliation(s)
- Jing Dong
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rongjie Cheng
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yingying Zhao
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ruiyang Zhang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaochen Zhu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lin Li
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaodong Li
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
4
|
Cubillán L, Obregón F, Lima L. Neurites outgrowth and amino acids levels in goldfish retina under hypo‐osmotic or hyper‐osmotic conditions. Int J Dev Neurosci 2011; 30:55-61. [DOI: 10.1016/j.ijdevneu.2011.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lisbeth Cubillán
- Laboratorio de NeuroquímicaCentro de Biofísica y BioquímicaInstituto Venezolano de Investigaciones (IVIC)Apdo. 21827Caracas1020‐AVenezuela
| | - Francisco Obregón
- Laboratorio de NeuroquímicaCentro de Biofísica y BioquímicaInstituto Venezolano de Investigaciones (IVIC)Apdo. 21827Caracas1020‐AVenezuela
| | - Lucimey Lima
- Laboratorio de NeuroquímicaCentro de Biofísica y BioquímicaInstituto Venezolano de Investigaciones (IVIC)Apdo. 21827Caracas1020‐AVenezuela
| |
Collapse
|
5
|
Nusetti S, Urbina M, Lima L. Effects of zinc ex vivo on taurine uptake in goldfish retinal cells. J Biomed Sci 2010; 17 Suppl 1:S13. [PMID: 20804587 PMCID: PMC2994400 DOI: 10.1186/1423-0127-17-s1-s13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Taurine and zinc exert neurotrophic effects in the central nervous system. Current studies demonstrate that Na+/Cl- dependent neurotransmitter transporters, similar to that of taurine, are modulated by micromolar concentrations of zinc. This study examined the effect of zinc sulfate ex vivo on [3H]taurine transport in goldfish retina. Methods Isolated cells were incubated in Ringer with zinc (0.1–100 µM). Taurine transport was done with 50 nM [3H]taurine or by isotopic dilution with taurine (0.001–1 mM) and 50 nM [3H]taurine. Results Zinc reduced the capacity of taurine transport without changes in affinity, and caused a noncompetitive inhibition of high affinity taurine transport, with an EC50= 0.072 µM. The mechanism by which zinc affects taurine transport is unknown at the present. Conclusions There may be a binding site of zinc in the transporter that affects union or translocation of taurine, or possibly the formation of taurine-zinc complexes, rather than free zinc, could affect the operation of the transporter.
Collapse
Affiliation(s)
- Sonia Nusetti
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| | | | | |
Collapse
|
6
|
Bulley S, Shen W. Reciprocal regulation between taurine and glutamate response via Ca2+-dependent pathways in retinal third-order neurons. J Biomed Sci 2010; 17 Suppl 1:S5. [PMID: 20804625 PMCID: PMC2994392 DOI: 10.1186/1423-0127-17-s1-s5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although taurine and glutamate are the most abundant amino acids conducting neural signals in the central nervous system, the communication between these two neurotransmitters is largely unknown. This study explores the interaction of taurine and glutamate in the retinal third-order neurons. Using specific antibodies, both taurine and taurine transporters were localized in photoreceptors and Off-bipolar cells, glutamatergic neurons in retinas. It is possible that Off-bipolar cells release juxtaposed glutamate and taurine to activate the third-order neurons in retina. The interaction of taurine and glutamate was studied in acutely dissociated third-order neurons in whole-cell patch-clamp recording and Ca2+ imaging. We find that taurine effectively reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors are present in the neurons. A CaMKII inhibitor partially reversed the effect of taurine, suggesting that a Ca2+/calmodulin-dependent pathway is involved in taurine regulation. On the other hand, a rapid influx of Ca2+ through ionotropic glutamate receptors could inhibit the amplitude and kinetics of taurine-elicited currents in the third-order neurons, which could be controlled with intracellular application of BAPTA a fast Ca2+ chelator. This study indicates that taurine is a potential neuromodulator in glutamate transmission. The reciprocal inhibition between taurine and glutamate in the postsynaptic neurons contributes to computation of visual signals in the retinal neurons.
Collapse
Affiliation(s)
- Simon Bulley
- College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|