1
|
Liao L, Yao Z, Kong J, Zhang X, Li H, Chen W, Xie Q. Transcriptomic analysis reveals the dynamic changes of transcription factors during early development of chicken embryo. BMC Genomics 2022; 23:825. [PMID: 36513979 PMCID: PMC9746114 DOI: 10.1186/s12864-022-09054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The transition from fertilized egg to embryo in chicken requires activation of hundreds of genes that were mostly inactivated before fertilization, which is accompanied with various biological processes. Undoubtedly, transcription factors (TFs) play important roles in regulating the changes in gene expression pattern observed at early development. However, the contribution of TFs during early embryo development of chicken still remains largely unknown that need to be investigated. Therefore, an understanding of the development of vertebrates would be greatly facilitated by study of the dynamic changes in transcription factors during early chicken embryo. RESULTS In the current study, we selected five early developmental stages in White Leghorn chicken, gallus gallus, for transcriptome analysis, cover 17,478 genes with about 807 million clean reads of RNA-sequencing. We have compared global gene expression patterns of consecutive stages and noted the differences. Comparative analysis of differentially expressed TFs (FDR < 0.05) profiles between neighboring developmental timepoints revealed significantly enriched biological categories associated with differentiation, development and morphogenesis. We also found that Zf-C2H2, Homeobox and bHLH were three dominant transcription factor families that appeared in early embryogenesis. More importantly, a TFs co-expression network was constructed and 16 critical TFs were identified. CONCLUSION Our findings provide a comprehensive regulatory framework of TFs in chicken early embryo, revealing new insights into alterations of chicken embryonic TF expression and broadening better understanding of TF function in chicken embryogenesis.
Collapse
Affiliation(s)
- Liqin Liao
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| | - Ziqi Yao
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China
| | - Jie Kong
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Xinheng Zhang
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Hongxin Li
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| | - Weiguo Chen
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Qingmei Xie
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| |
Collapse
|