1
|
Qu J, Nair A, Muir GW, Loveday KA, Yang Z, Nourafkan E, Welbourne EN, Maamra M, Dickman MJ, Kis Z. Quality by design for mRNA platform purification based on continuous oligo-dT chromatography. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102333. [PMID: 39380714 PMCID: PMC11458983 DOI: 10.1016/j.omtn.2024.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Oligo-deoxythymidine (oligo-dT) ligand-based affinity chromatography is a robust method for purifying mRNA drug substances within the manufacturing process of mRNA-based products, including vaccines and therapeutics. However, the conventional batch mode of operation for oligo-dT chromatography has certain drawbacks that reduce the productivity of this process. Here, we report a new continuous oligo-dT chromatography process for the purification of in vitro transcribed mRNA, which reduces losses, improves the efficiency of oligo-dT resin use, and intensifies the chromatography process. Furthermore, the quality by design (QbD) framework was used to establish a design space for the newly developed method. The optimization of process parameters (PPs), including salt type, salt concentration, load flow rate and mRNA load concentration both in batch and the continuous mode, achieved a greater than 90% yield (mRNA recovery) along with greater than 95% mRNA integrity and greater than 99% purity. The productivity of continuous chromatography was estimated to be 5.75-fold higher, and the operating cost was estimated 15% lower, when compared with batch chromatography. Moreover, the QbD framework was further used to map the relationship between critical quality attributes and key performance indicators as a function of critical process parameters and critical material attributes.
Collapse
Affiliation(s)
- Jixin Qu
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Adithya Nair
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - George W. Muir
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Kate A. Loveday
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Zidi Yang
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Ehsan Nourafkan
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Emma N. Welbourne
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Mabrouka Maamra
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Mark J. Dickman
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Zoltán Kis
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
- Department of Chemical Engineering, Imperial College London, Roderic Hill Building, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
2
|
Lothert K, Wolff MW. Affinity and Pseudo-Affinity Membrane Chromatography for Viral Vector and Vaccine Purifications: A Review. MEMBRANES 2023; 13:770. [PMID: 37755191 PMCID: PMC10537005 DOI: 10.3390/membranes13090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Several chromatographic approaches have been established over the last decades for the production of pharmaceutically relevant viruses. Due to the large size of these products compared to other biopharmaceuticals, e.g., proteins, convective flow media have proven to be superior to bead-based resins in terms of process productivity and column capacity. One representative of such convective flow materials is membranes, which can be modified to suit the particular operating principle and are also suitable for economical single-use applications. Among the different membrane variants, affinity surfaces allow for the most selective separation of the target molecule from other components in the feed solution, especially from host cell-derived DNA and proteins. A successful membrane affinity chromatography, however, requires the identification and implementation of ligands, which can be applied economically while at the same time being stable during the process and non-toxic in the case of any leaching. This review summarizes the current evaluation of membrane-based affinity purifications for viruses and virus-like particles, including traditional resin and monolith approaches and the advantages of membrane applications. An overview of potential affinity ligands is given, as well as considerations of suitable affinity platform technologies, e.g., for different virus serotypes, including a description of processes using pseudo-affinity matrices, such as sulfated cellulose membrane adsorbers.
Collapse
Affiliation(s)
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| |
Collapse
|
3
|
Yang O, Tao Y, Qadan M, Ierapetritou M. Process Design and Comparison for Batch and Continuous Manufacturing of Recombinant Adeno-Associated Virus. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
5
|
Mendes JP, Silva RJS, Berg M, Mathiasson L, Peixoto C, Alves PM, Carrondo MJT. Oncolytic virus purification with periodic counter-current chromatography. Biotechnol Bioeng 2021; 118:3522-3532. [PMID: 33818758 DOI: 10.1002/bit.27779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 11/11/2022]
Abstract
Virus-based biologicals are one of the most promising biopharmaceuticals of the 21st century medicine and play a significant role in the development of innovative therapeutic, prophylactic, and clinical applications. Oncolytic virus manufacturing scale can range from 5 L in research and development up to 50 L for clinical studies and reach hundreds of liters for commercial scale. The inherent productivity and high integration potential of periodic counter-current chromatography (PCC) offer a transversal solution to decrease equipment footprint and the reduction of several non-value-added unit operations. We report on the design of an efficient PCC process applied to the intermediate purification of oncolytic adenovirus. The developed ion-exchange chromatographic purification method was carried out using a four-column setup for three different scenarios: (i) variation in the feedstock, (ii) potential use of a post-load washing step to improve virus recovery, and (iii) stability during extended operation. Obtained virus recoveries (57%-86%) and impurity reductions (>80% DNA, and >70% total protein) match or overcome batch purification. Regarding process stability and automation, our results show that not only the dynamic control strategy used is able to suppress perturbations in the sample inlet but also allows for unattended operation in the case of ion exchange capture.
Collapse
Affiliation(s)
- João P Mendes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J S Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | |
Collapse
|
6
|
Carter OWL, Xu Y, Sadler PJ. Minerals in biology and medicine. RSC Adv 2021; 11:1939-1951. [PMID: 35424161 PMCID: PMC8693805 DOI: 10.1039/d0ra09992a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
Natural minerals ('stone drugs') have been used in traditional Chinese medicines for over 2000 years, but there is potential for modern-day use of inorganic minerals to combat viral infections, antimicrobial resistance, and for other areas in need of new therapies and diagnostic aids. Metal and mineral surfaces on scales from milli-to nanometres, either natural or synthetic, are patterned or can be modified with hydrophilic/hydrophobic and ionic/covalent target-recognition sites. They introduce new strategies for medical applications. Such surfaces have novel properties compared to single metal centres. Moreover, 3D mineral particles (including hybrid organo-minerals) can have reactive cavities, and some minerals have dynamic movement of metal ions, anions, and other molecules within their structures. Minerals have a unique ability to interact with viruses, microbes and macro-biomolecules through multipoint ionic and/or non-covalent contacts, with potential for novel applications in therapy and biotechnology. Investigations of mineral deposits in biology, with their often inherent heterogeneity and tendency to become chemically-modified on isolation, are highly challenging, but new methods for their study, including in intact tissues, hold promise for future advances.
Collapse
Affiliation(s)
- Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- MAS CDT, Senate House, University of Warwick Coventry CV4 7AL UK
| | - Yingjian Xu
- GoldenKeys High-Tech Materials Co., Ltd, Building B, Innovation & Entrepreneurship Park Guian New Area Guizhou Province 550025 China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|