1
|
Cui X, Zhang C, Fu C, Hu J, Li T, Li L. YY1 is involved in homologous recombination inhibition at guanine quadruplex sites in human cells. Nucleic Acids Res 2024; 52:7401-7413. [PMID: 38869071 PMCID: PMC11260479 DOI: 10.1093/nar/gkae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Homologous recombination (HR) is a key process for repairing DNA double strand breaks and for promoting genetic diversity. However, HR occurs unevenly across the genome, and certain genomic features can influence its activity. One such feature is the presence of guanine quadruplexes (G4s), stable secondary structures widely distributed throughout the genome. These G4s play essential roles in gene transcription and genome stability regulation. Especially, elevated G4 levels in cells deficient in the Bloom syndrome helicase (BLM) significantly enhance HR at G4 sites, potentially threatening genome stability. Here, we investigated the role of G4-binding protein Yin Yang-1 (YY1) in modulating HR at G4 sites in human cells. Our results show that YY1's binding to G4 structures suppresses sister chromatid exchange after BLM knockdown, and YY1's chromatin occupancy negatively correlates with the overall HR rate observed across the genome. By limiting RAD51 homolog 1 (RAD51) access, YY1 preferentially binds to essential genomic regions, shielding them from excessive HR. Our findings unveil a novel role of YY1-G4 interaction, revealing novel insights into cellular mechanisms involved in HR regulation.
Collapse
Affiliation(s)
- Xinyu Cui
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengwen Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunqing Fu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinglei Hu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tengjiao Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Heddar A, Guichoux N, Auger N, Misrahi M. A SPIDR homozygous nonsense pathogenic variant in isolated primary ovarian insufficiency with chromosomal instability. Clin Genet 2021; 101:242-246. [PMID: 34697795 DOI: 10.1111/cge.14080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/16/2023]
Abstract
Primary ovarian insufficiency (POI), affecting 1% of women under 40 years is a public health problem. Genes involved in meiosis/DNA repair were recently shown to be the leading family of associated causal genes, some of them also cause tumors/cancers. Here, using targeted next-generation sequencing in an Indian POI patient with primary amenorrhea and streak ovaries, we identified a novel homozygous nonsense variant in exon 7 of SPIDR (KIAA0146) c.814C > T, R272*, predicted to lead a nonsense-mediated mRNA decay. SPIDR was recently identified by in vitro assays as an auxiliary protein interacting with RAD51 and BLM, two major proteins involved in genome stability. Consistent with alteration of the RAD51 pathway, we observed a strong increase in mitomycin C-induced DNA breaks and aberrant metaphases in the patient's cells compared to a control. However, sister chromatid exchanges were normal in contrast to the sharp increase characteristic of the BLM pathway. This is the first evidence of chromosomal instability associated with a SPIDR molecular defect, which supports the role of SPIDR in double-stranded DNA damage repair in vivo in humans and its causal role in POI. Our study increases knowledge on the SPIDR function and has broad implications in the management of such patients.
Collapse
Affiliation(s)
- Abdelkader Heddar
- Université Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,UMR-S 1193, INSERM, Université Paris Saclay, Faculté de Médecine, Hôpital Paul Brousse, Villejuif, France
| | - Nathalie Guichoux
- Service de Pédiatrie et des Urgences Pédiatriques, Hôpital Ambroise-Paré, Hôpitaux Universitaires Paris-Saclay, Boulogne-Billancourt, France
| | - Nathalie Auger
- Département de Biologie et de Pathologie, Institut Gustave Roussy, Villejuif, France
| | - Micheline Misrahi
- Université Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,UMR-S 1193, INSERM, Université Paris Saclay, Faculté de Médecine, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
3
|
Wang L, Li J, Zhou H, Zhang W, Gao J, Zheng P. A novel lncRNA Discn fine-tunes replication protein A (RPA) availability to promote genomic stability. Nat Commun 2021; 12:5572. [PMID: 34552092 PMCID: PMC8458541 DOI: 10.1038/s41467-021-25827-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
RPA is a master regulator of DNA metabolism and RPA availability acts as a rate-limiting factor. While numerous studies focused on the post-translational regulations of RPA for its functions, little is known regarding how RPA availability is controlled. Here we identify a novel lncRNA Discn as the guardian of RPA availability in stem cells. Discn is induced upon genotoxic stress and binds to neucleolin (NCL) in the nucleolus. This prevents NCL from translocation into nucleoplasm and avoids undesirable NCL-mediated RPA sequestration. Thus, Discn-NCL-RPA pathway preserves a sufficient RPA pool for DNA replication stress response and repair. Discn loss causes massive genome instability in mouse embryonic stem cells and neural stem/progenigor cells. Mice depleted of Discn display newborn death and brain dysfunctions due to DNA damage accumulation and associated inflammatory reactions. Our findings uncover a key regulator of DNA metabolism and provide new clue to understand the chemoresistance in cancer treatment.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jingzheng Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
4
|
Rababa'H AM, Alzoubi KH, Khabour OF, Ababneh M. Ameliorative effect of metformin on methotrexate-induced genotoxicity: An in vitro study in human cultured lymphocytes. Biomed Rep 2021; 15:59. [PMID: 34094535 PMCID: PMC8165753 DOI: 10.3892/br.2021.1435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 11/05/2022] Open
Abstract
Methotrexate is a folic acid antagonist that has been shown to be genotoxic to normal healthy cells. Metformin is an insulin-sensitizing agent, with multiple potential pharmacodynamic profiles. The aim of the present study was to evaluate the genotoxic effect of methotrexate on DNA and the potential ameliorative effect of metformin on chromosomal damage induced by methotrexate. The present study was performed in vitro, and the frequency of chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) in human cultured lymphocytes were measured. Blood samples from five non-smoking healthy men aged 20-35 years were donated and used in the present study. Treatment of cultured blood cells with methotrexate significantly increased the number of cells with CAs (P<0.0001) and the frequency of SCEs (P<0.0001). The chromosomal injury induced by methotrexate was significantly reduced by pretreatment of the samples with metformin (P<0.0001). Importantly, the treatment of the cells with metformin alone did not affect the frequency of SCEs compared with the control group (P>0.05). Additionally, methotrexate and metformin alone, and combined, induced significant decreases in the proliferative index compared with the control group (P<0.05). In conclusion, metformin ameliorated the genotoxicity induced by methotrexate in cultured human lymphocytes.
Collapse
Affiliation(s)
- Abeer M Rababa'H
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mera Ababneh
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|