1
|
Cuevas-Hernández RI, Girard RMBM, Krstulović L, Bajić M, Silber AM. An aromatic imidazoline derived from chloroquinoline triggers cell cycle arrest and inhibits with high selectivity the Trypanosoma cruzi mammalian host-cells infection. PLoS Negl Trop Dis 2021; 15:e0009994. [PMID: 34843481 PMCID: PMC8659321 DOI: 10.1371/journal.pntd.0009994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/09/2021] [Accepted: 11/13/2021] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi is a hemoflagellated parasite causing Chagas disease, which affects 6-8 million people in the Americas. More than one hundred years after the description of this disease, the available drugs for treating the T. cruzi infection remain largely unsatisfactory. Chloroquinoline and arylamidine moieties are separately found in various compounds reported for their anti-trypanosoma activities. In this work we evaluate the anti-T. cruzi activity of a collection of 26 "chimeric" molecules combining choroquinoline and amidine structures. In a first screening using epimastigote forms of the parasite as a proxy for the clinically relevant stages, we selected the compound 7-chloro-4-[4-(4,5-dihydro-1H-imidazol-2-yl)phenoxy]quinoline (named here as A6) that performed better as an anti-T. cruzi compound (IC50 of 2.2 ± 0.3 μM) and showed a low toxicity for the mammalian cell CHO-K1 (CC50 of 137.9 ± 17.3 μM). We initially investigated the mechanism of death associated to the selected compound. The A6 did not trigger phosphatidylserine exposure or plasma membrane permeabilization. Further investigation led us to observe that under short-term incubations (until 6 hours), no alterations of mitochondrial function were observed. However, at longer incubation times (4 days), A6 was able to decrease the intracellular Ca2+, to diminish the intracellular ATP levels, and to collapse mitochondrial inner membrane potential. After analysing the cell cycle, we found as well that A6 produced an arrest in the S phase that impairs the parasite proliferation. Finally, A6 was effective against the infective forms of the parasite during the infection of the mammalian host cells at a nanomolar concentration (IC50(tryps) = 26.7 ± 3.7 nM), exhibiting a selectivity index (SI) of 5,170. Our data suggest that A6 is a promising hit against T. cruzi.
Collapse
Affiliation(s)
- Roberto I. Cuevas-Hernández
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Richard M. B. M. Girard
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
2
|
Michels PAM, Villafraz O, Pineda E, Alencar MB, Cáceres AJ, Silber AM, Bringaud F. Carbohydrate metabolism in trypanosomatids: New insights revealing novel complexity, diversity and species-unique features. Exp Parasitol 2021; 224:108102. [PMID: 33775649 DOI: 10.1016/j.exppara.2021.108102] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
The human pathogenic trypanosomatid species collectively called the "TriTryp parasites" - Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. - have complex life cycles, with each of these parasitic protists residing in a different niche during their successive developmental stages where they encounter diverse nutrients. Consequently, they adapt their metabolic network accordingly. Yet, throughout the life cycles, carbohydrate metabolism - involving the glycolytic, gluconeogenic and pentose-phosphate pathways - always plays a central role in the biology of these parasites, whether the available carbon and free energy sources are saccharides, amino acids or lipids. In this paper, we provide an updated review of the carbohydrate metabolism of the TriTryps, highlighting new data about this metabolic network, the interconnection of its pathways and the compartmentalisation of its enzymes within glycosomes, cytosol and mitochondrion. Differences in the expression of the branches of the metabolic network between the successive life-cycle stages of each of these parasitic trypanosomatids are discussed, as well as differences between them. Recent structural and kinetic studies have revealed unique regulatory mechanisms for some of the network's key enzymes with important species-specific variations. Furthermore, reports of multiple post-translational modifications of trypanosomal glycolytic enzymes suggest that additional mechanisms for stage- and/or environmental cues that regulate activity are operational in the parasites. The detailed comparison of the carbohydrate metabolism of the TriTryps has thus revealed multiple differences and a greater complexity, including for the reduced metabolic network in bloodstream-form T. brucei, than previously appreciated. Although these parasites are related, share many cytological and metabolic features and are grouped within a single taxonomic family, the differences highlighted in this review reflect their separate evolutionary tracks from a common ancestor to the extant organisms. These differences are indicative of their adaptation to the different insect vectors and niches occupied in their mammalian hosts.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Oriana Villafraz
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Erika Pineda
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Mayke B Alencar
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| | - Ariel M Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France.
| |
Collapse
|
3
|
Souza ROO, Damasceno FS, Marsiccobetre S, Biran M, Murata G, Curi R, Bringaud F, Silber AM. Fatty acid oxidation participates in resistance to nutrient-depleted environments in the insect stages of Trypanosoma cruzi. PLoS Pathog 2021; 17:e1009495. [PMID: 33819309 PMCID: PMC8049481 DOI: 10.1371/journal.ppat.1009495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/15/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi, the parasite causing Chagas disease, is a digenetic flagellated protist that infects mammals (including humans) and reduviid insect vectors. Therefore, T. cruzi must colonize different niches in order to complete its life cycle in both hosts. This fact determines the need of adaptations to face challenging environmental cues. The primary environmental challenge, particularly in the insect stages, is poor nutrient availability. In this regard, it is well known that T. cruzi has a flexible metabolism able to rapidly switch from carbohydrates (mainly glucose) to amino acids (mostly proline) consumption. Also established has been the capability of T. cruzi to use glucose and amino acids to support the differentiation process occurring in the insect, from replicative non-infective epimastigotes to non-replicative infective metacyclic trypomastigotes. However, little is known about the possibilities of using externally available and internally stored fatty acids as resources to survive in nutrient-poor environments, and to sustain metacyclogenesis. In this study, we revisit the metabolic fate of fatty acid breakdown in T. cruzi. Herein, we show that during parasite proliferation, the glucose concentration in the medium can regulate the fatty acid metabolism. At the stationary phase, the parasites fully oxidize fatty acids. [U-14C]-palmitate can be taken up from the medium, leading to CO2 production. Additionally, we show that electrons are fed directly to oxidative phosphorylation, and acetyl-CoA is supplied to the tricarboxylic acid (TCA) cycle, which can be used to feed anabolic pathways such as the de novo biosynthesis of fatty acids. Finally, we show as well that the inhibition of fatty acids mobilization into the mitochondrion diminishes the survival to severe starvation, and impairs metacyclogenesis.
Collapse
Affiliation(s)
- Rodolpho Ornitz Oliveira Souza
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Sabrina Marsiccobetre
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, Bordeaux, France
| | - Gilson Murata
- University of São Paulo, Department of Physiology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Rui Curi
- University of São Paulo, Department of Physiology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
- Cruzeiro do Sul University, Interdisciplinary Post-Graduate Program in Health Sciences—São Paulo, São Paulo, Brazil
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
| | - Ariel Mariano Silber
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Luévano-Martínez LA, Girard RMBM, Alencar MB, Silber AM. ATP regulates the activity of an alternative oxidase in Trypanosoma brucei. FEBS Lett 2020; 594:2150-2158. [PMID: 32279308 DOI: 10.1002/1873-3468.13790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/05/2023]
Abstract
The reduced mitochondrial respiratory chain from the bloodstream forms of Trypanosoma brucei is composed of only a membrane-bound glycerol-3-phosphate dehydrogenase and an alternative oxidase. Since these enzymes are not proton pumps, their functions are restricted to the maintenance of the redox balance in the glycosome by means of the dihydroxyacetone phosphate/glycerol-3-phosphate shuttle. Additionally, an F1 Fo -ATP synthase functions as an ATP-hydrolysing enzyme to establish the proton motive force necessary to maintain the basic functions of mitochondria. In this report, we studied the interplay between the alternative oxidase and ATP synthase, and we found that, in addition to its role as a proton pump, ATP synthase contributes to maintain safe levels of ATP to prevent the inhibition of the alternative oxidase by ATP.
Collapse
Affiliation(s)
- Luis Alberto Luévano-Martínez
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Richard M B M Girard
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Mayke Bezerra Alencar
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|