1
|
Rodrigues MJ, Casadei CM, Weinert T, Panneels V, Schertler GFX. Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect. Acta Crystallogr D Struct Biol 2023; 79:224-233. [PMID: 36876432 PMCID: PMC9986800 DOI: 10.1107/s2059798323000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023] Open
Abstract
Rhodopsin is a G-protein-coupled receptor that detects light and initiates the intracellular signalling cascades that underpin vertebrate vision. Light sensitivity is achieved by covalent linkage to 11-cis retinal, which isomerizes upon photo-absorption. Serial femtosecond crystallography data collected from rhodopsin microcrystals grown in the lipidic cubic phase were used to solve the room-temperature structure of the receptor. Although the diffraction data showed high completeness and good consistency to 1.8 Å resolution, prominent electron-density features remained unaccounted for throughout the unit cell after model building and refinement. A deeper analysis of the diffraction intensities uncovered the presence of a lattice-translocation defect (LTD) within the crystals. The procedure followed to correct the diffraction intensities for this pathology enabled the building of an improved resting-state model. The correction was essential to both confidently model the structure of the unilluminated state and interpret the light-activated data collected after photo-excitation of the crystals. It is expected that similar cases of LTD will be observed in other serial crystallography experiments and that correction will be required in a variety of systems.
Collapse
Affiliation(s)
- Matthew J. Rodrigues
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Cecilia M. Casadei
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH-Zurich, Zurich, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Valerie Panneels
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Gebhard F. X. Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH-Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Zhao FZ, Sun B, Yu L, Xiao QJ, Wang ZJ, Chen LL, Liang H, Wang QS, He JH, Yin DC. A novel sample delivery system based on circular motion for in situ serial synchrotron crystallography. LAB ON A CHIP 2020; 20:3888-3898. [PMID: 32966481 DOI: 10.1039/d0lc00443j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A sample delivery system is one of the key parts of serial crystallography. It is the main limiting factor affecting the application of serial crystallography. At present, although a variety of useful sample delivery systems have been developed for serial crystallography, it still remains the focus of the field to further improve the performance and efficiency of sample delivery. In existing sample delivery technologies, samples are usually delivered in linear motion. Here we show that the samples can also be delivered using circular motion, which is a novel motion mode never tested before. In this paper, we report a microfluidic rotating-target sample delivery device, which is characterized by the circular motion of the samples, and verify the performance of the device at a synchrotron radiation facility. The microfluidic rotating-target sample delivery device consists of two parts: a microfluidic sample plate and a motion control system. Sample delivery is realized by rotating the microfluidic sample plate containing in situ grown crystals. This device offers significant advantages, including a very wide adjustable range of delivery speed, low background noise, and low sample consumption. Using the microfluidic rotating-target device, we carried out in situ serial crystallography experiments with lysozyme and proteinase K as model samples at the Shanghai Synchrotron Radiation Facility, and performed structural determination based on the serial crystallographic data. The results showed that the designed device is fully compatible with the synchrotron radiation facility, and the structure determination of proteins is successful using the serial crystallographic data obtained with the device.
Collapse
Affiliation(s)
- Feng-Zhu Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Li Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.
| | - Qing-Jie Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China. and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhi-Jun Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Liang-Liang Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Huan Liang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Qi-Sheng Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China. and The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Da-Chuan Yin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China. and Shenzhen Research Institute, Northwestern Polytechnical University, Shenzhen, China
| |
Collapse
|